CON2D Getting Started

1. System Requirement

a) CON2D can be compiled and run on generic UNIX system with FORTRAN 77 compiler.

b) The text version of post processor, POSTT, can be compiled and run on generic UNIX system with FORTRAN 77 compiler.

c) The X windows version of post processor, POSTX, requires HOOPS software installed in your UNIX system. Moreover, the following sentences have to be appeared in your environment settings to make the graphic windows to be displayed correctly:

HOOPS_LICENSE=customer = uofillinois, product = (classic), key = 255ACE61-B29ED1A-5161AF8B-258ED3F HOOPS_SYSTEM_OPTIONS=license = (customer = uofillinois, product = (classic), key= 255ACE61-B29ED1A-5161AF8B-258ED3F) DISPLAY=bgtbim1.me.uiuc.edu:0.0 HOOPS_PICTURE=x11/bgtibm1.me.uiuc.edu:0.0

Certainly, you may have different keys and customer names in your system. The DISPLAY and HOOPS_PICTURE have to have the same displaying client to show the graphic windows.

2. Compiling and Installation

a) Download the con2d.tar, con2dpostt.tar or con2dpostx.tar into your machine from CCC (Continuous Casting Consortium) member's page or FTP site.b) Un-tar the source code using the following command:

tar -xf [filename].tar [destinate directory]

c) Modify the BINDIR entry in the *makefile* to the directory which you want to put the executive files in.

d) Compile your executives by using:

make

3. Input Description

	VALUE	2	VARIABLE		REMARKS
			NAME		
	1 ioutput			<i>Output Type [1=no, 2=short, 3=medium]</i>	
UBC	UBC test run				title
3	ianalyz.		lyz	Analysis Type	
				[1=1	Heat Transfer,2=Stress,3=Coupled]
3		iz,		Stre	ss State
				[1=	Pl Strain,2=Pl stress,3=GPS,4=GGPS]
1	1		isimul		ılation Zone
				[1=	Mold,2=Mold to end,3=end to RH,4=RH
0	ima		noldis Fla		for mold distortion
				1=0	N, others=OFF
У	mes		shdec To u		se previous meshfile: y
				othe	rwise n
					Column 1)
Lme	sh01	mesh	shname Nan		e of the newly created Mesh file
n	str0dec		lec	For Initial Stress file: y	
				else	n (no stress)
1576	5.00	temp	0	Initi	al temp of the strand
1		ifixt		Flag	g for fix temp data
				$l=Y_{s}$,2=N
mt01	l.shl	fixtn	ате	Nam	ne of file with temp data
2	2		iflux		for Super heat flux
				<i>l=</i> }	/,2=N
2	is		l	Steel	l Type
				[1=4	Austenitic Stainless,
				2=P	lain-Carbon Steel,
				3 = 1	Test-Properties,
				4 = 1	Ferritic Stainless]
0.00	3	pc		Carl	bon Content
1.09	96 (m) rmol		ng	Mole	d Length
.025	54 (m/s) case		el	Cast	ing Speed
.000	0 (s) tinit			Initi	al time
45.0	0 (s) $tmax$			Fina	l time
1000	01 imax		;	Max	imum Number of time steps
0		icurv	ve	Mold	d Type
				0=S	Straight, 1=Curved
2		itape	er	Type	e of Mold Taper:
				l=ia	leal,2=linear,3=Tri-linear
.0 .	0 (%/m) tap		wl taprnl	Wide	e & Narrow face taper
4		num	step	No.	of diff time step sizes
.010	0.500	dtste	p stepchg	time	step size(s) final time (s)

.020 1.000	dtstep stepchg	time step size(s) final time (s)
.050 5.000	dtstep stepchg	time step size(s) final time (s)
.100 45.00	dtstep stepchg	time step size(s) final time (s)
1	idef	<i>Heat Transfer soln procedure(default=1):</i>
3	isloads	choice of surface load handling
0	force	<i>surface load (-99999 for user defined subroutine in user.f)</i>
0	ipress	Flag for Ferrostatic Pressure:
		1=ON, 2=OFF
0	imoldf	Flag for Mold wall restraint:
		1=ON, 2=OFF
2	ipsfunc	Flag for plasticity:
		0=Elastic,1=Pl Str Rate,2=Tot Pl Str
9	iconlaw	Constitutive Law:
		1: Strain hardening constitutive law (Kowlowski Model II)
		2: Strain hardening constitutive law (Kowlowski Model III)
		3: Vacant
		4: Steady State Creep Law
		5: Elasto Plastic Creep Law (Weak Powered n=1)
		6: Elasto Plastic Creep Law (Strong Powered $-n=5$)
		7: Vacant
		8: Strain and time hardening constitutive law
		9: Kowlowski Model III enhanced by Power Law in ? region
1.0000	dispcnv	HT Conv parameter, >1.0 suppresses HT conv iteration
4	numprint	Number of print interval desired
.050 0.500	printi timeprnt	<i>Print interval(s) Final time(s)</i>
.100 1.000	printi timeprnt	Print interval(s) Final time(s)
.500 5.000	printi timeprnt	Print interval(s) Final time(s)
1.00 45.00	printi timeprnt	Print interval(s) Final time(s)
y	outask	Flag for similar print interval as binout y or n