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Abstract 

Numerical simulations are performed to study coupled fluid flow and heat transfer in a thin 
liquid slag or flux layer. The steady state Navier-Stokes equations are solved using the 
commercial finite volume code FLUENT. The combined effects of natural convection, bottom 
shear velocity and strongly temperature dependent viscosity are investigated. It is found that the 
variation of Nu with Ra for fluxes with strongly temperature dependent viscosities is analogous 
to correlations for fluids with constant viscosity, but the critical Ra number for the onset of 
natural convection is larger. For thin layers of realistic fluxes, natural convection is suppressed, 
and Nu increases linearly with increase of bottom shear velocity. The increase is greater for 
decreasing average viscosity. The increase of Nu is slight and is only due to end effects for the 
flat interface shape studied here. 
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1. Introduction 

Slag floats on the surface of molten metals during many different processing and refining 
operations, including furnaces, ladles, tundishes and molds. In addition to assisting with 
chemical reactions, inclusion removal and protection from air absorption, this layer plays an 
important role in providing thermal insulation.  One process where the liquid slag layer is 
particularly important is the continuous casting of steel.  A carefully-designed mixture of oxides 
is added as a powder to the top of the molten steel at regular time intervals, where it sinters and 
melts to form a liquid flux layer that floats above the molten metal surface. The melting and 
reaction rates depend on the composition (especially carbon content), porosity, and thermal 
properties of the flux powder.  The interface between the liquid flux and the sintered solid 
powder floating above is at the melting temperature of the flux and is generally quite rigid or 
viscous relative to the liquid below.  The lower surface of the liquid flux layer is at the 
temperature of the molten steel flowing below it, and is subjected to shear velocity and shape 
changes which depend on the turbulent flow conditions in the molten steel. The liquid flux is 
drawn into the gap between the solidifying steel shell and the mold to provide lubrication and 
thermal uniformity.  At the vessel walls, some of the molten flux can resolidify to form a solid 
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slag rim, that comprises the edges of the liquid flux domain.  Fig. 1 shows a vertical cross section 
of the continuous casting process.  

Superficially, the heat loss through the flux layers increases with increasing conductivity and 
decreasing layer thickness.  However, heat transfer through the liquid flux layer actually occurs 
by conduction, natural convection, forced convection and even radiation for many fluxes which 
are semitransparent above the sintering temperature (800-1000 oC). Quantifying this heat transfer 
is important yet has received little attention in previous literature. It depends on many complex 
interacting factors, including the powder and flux properties (viscosity, density, specific heat, 
latent heat, conductivity, and radiation properties such as absorption coefficient), vessel 
geometry, the shape and thickness of the powder and liquid flux layers, interfacial level 
fluctuations, and the bottom shear velocity imparted by the flowing metal below. The present 
work investigates this coupled fluid flow and heat transfer in the thin liquid flux layer using 
computational models, focusing on the effects of temperature-dependent viscosity, layer 
thickness, and bottom shear velocity. The results of this work will be useful for the prediction of 
heat transfer in processes involving floating slag, consisting of solid (powder), sintered, and 
molten flux layers with resolidified flux at the edges. 

 
2. Previous Work 

McDavid and Thomas (1996) performed one of the few computational studies of flow in flux 
layers. They simulated three-dimensional (3-D) steady, coupled fluid flow and heat transfer in 
the powder, liquid, and re-solidified flux layers using the finite element package, FIDAP. The 
steel-liquid flux interface velocity was found by iterating with a 3-D k-ε turbulent model of fluid 
flow in the nozzle and mold region of the continuous caster, until equal shear stress along the 
interface was achieved. The steel-flux interface shape and the rate of flux infiltration into the 
mold-strand gap were fixed to values measured in an operating steel caster. Temperature 
dependent properties were used. The converged solution matched the measured liquid flux layer 
thickness profile. The flow solution showed a single large recirculation region whose depth 
increased with increasing liquid flux conductivity and decreasing flux viscosity, owing to 
increased heat transfer across the layer. Like flow in the steel pool beneath it, flow within the 
liquid flux layer was predominantly two-dimensional in the vertical plane normal to the narrow 
face.  The consumption of flux into the interfacial gap at the edges of the flux layer had little 
effect on the flow pattern over most of the domain. This work showed the importance of 
viscosity on the flow and thermal behavior: decreasing liquid flux viscosity caused recirculation 
velocity to increase and a corresponding increase of convection heat transfer.  It performed only 
two simulations, however, and ignored natural convection effects.  

Natural convection in the liquid flux layer arises because the density of the liquid flux is 
temperature dependent. The lower surface of the liquid flux layer is just above steel melting 
temperature (~1550 oC) while its top surface is at the melting temperature of the flux 
(800~1200oC) (McDavid and Thomas 1996). This large temperature gradient causes a density 
gradient. The unstable system breaks down as buoyancy forces set up alternate rising and falling 
plumes, which transport hot low-density fluid upward and cold high density fluid downward. 
These merge together to form Rayleigh-Benard convection cells. These natural convection cells 
will increase the mixing and heat transfer rate significantly beyond pure conduction. The 
resulting fluid flow and heat transfer in these large aspect ratio fluid layers has been studied 
extensively (Schluter, Lortz et al. 1965; Rossby 1969; Koschmieder and Pallas 1974; Kirchartz 
and Oertel 1988; Goldstein, Chiang et al. 1990). In a high-aspect-ratio vessel such as a steel-slab 
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caster, where the surface flow is along the length and the Rayleigh number is small, it is 
appropriate to assume that the fluid flow is two-dimensional with the cell axis along the width. 

Booker (1976) measured heat transfer and studied convection cell structure in a high Prandtl 
number fluid between horizontal flat plates.  The viscosity varied up to 300-fold between the top 
and bottom boundary temperatures. The Nusselt numbers were 12% lower than predictions of 
standard correlations (Rossby 1969) with the viscosity evaluated at the mean of the boundary 
temperatures.  Mohamad and Viskanta (1992) computed 2-D laminar flow in a shallow cavity 
(0.1 aspect ratio) driven by surface-shear and buoyancy for a low Prandtl number fluid. The 
cavity was heated from below and cooled at the top, where the shear velocity was applied. The 
equations were solved using a finite-volume method with SIMPLE (Tannehill, Anderson et al. 
1997). The results showed that the shear velocity has an insignificant effect on the heat transfer 
when natural convection dominates, ( 2/ Re 1Gr >> ).  Increasing shear velocity lowers heat 
transfer when 2/ Re ~ (1)Gr O  but increases heat transfer at higher velocities when forced 
convection dominates. Other simulations also showed that shear modified the Rayleigh-Benard 
convective cells generated due to heating from below (Sivaramakrishnan 2000). 

Recently, Sivaramakrishnan (2000) studied the transition between natural and forced 
convection flow in the liquid flux layer, using the finite-element program FIDAP. Above a 
critical bottom shear velocity, the natural convection cells are annihilated, and the flow pattern 
transforms into a single large recirculation region with a lower heat transfer rate. Parametric 
studies on flux viscosity and bottom shear velocity were performed, but this study did not 
include temperature dependent properties.  

The present study computes fluid flow and coupled heat transfer in a liquid flux layer, 
accounting for the combined effects of natural convection, bottom shear velocity and strongly 
temperature dependent viscosity.  Computations are performed for several different commercial 
fluxes and bottom shear velocities in a rectangular domain, shown in Fig. 2.   

 
3. Governing Equations and Solution Method 

To compute the fluid flow and heat transfer in this problem, the steady Navier-Stokes 
equations including buoyant body forces are solved for mass continuity, momentum in x and y 
direction and the heat balance: 
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where 0( ) /Tν µ ρ=  is the kinematic viscosity, /eff pk Cα ρ=  is the thermal diffusivity and 

0T T T∆ = −  is the temperature difference.  It is assumed that flow in the flux layer is 
predominantly two-dimensional and laminar, according to the low Re numbers in Table 1.  The 
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buoyancy effect is modeled by an extra term in the y-momentum equation (gravity direction) 
according to the Boussinesq approximation (Boussinesq 1903). 

The above equations are solved with the commercial fluid flow package FLUENT, version 
6.1 (Fluent Inc., 2003). The discretization scheme used is second order upwind for momentum 
and energy equations, and the SIMPLE scheme for pressure-velocity coupling. The steady state 
equations are solved using the segregated solver. The convergence criterion for all the 
simulations was 10-6, which means that the scaled residual of the final solution is reduced to 10-6 
of the initial residual (defined at the fifth iteration).  

 
4. Code validation 

The code was first validated against analytical solutions in several different problems, 
including flow between two parallel plates with temperature-dependent viscosity and buoyant 
convection in a thin layer.  Excellent agreement was achieved in all cases.  The code was further 
validated against experimental data involving steady Rayleigh-Benard convection in large-aspect 
ratio cavities. 

Kirchartz and Oertel (1988) measured natural convection flow in a thin cavity with aspect 
ratio of 10:4:1 (length : width : thickness) that was heated from below. The top and bottom were 
copper plates kept at constant temperatures. The sidewalls were glass which has higher thermal 
conductivity than the fluid, silicon oil.  The density variations produced by the temperature 
distribution were visualized using a differential interferogram.  

A two-dimensional simulation was performed to match the experimental conditions for Case 
1A, given in Table 1.  The side walls were assumed to be perfectly conducting with a linear 
temperature gradient. The flow field and temperature contours obtained using a grid of 320 cells 
along the length and 32 cells in the thickness direction are shown in Fig. 3.  The periodic high 
temperature gradients where the rising plumes impinge on the top surface cause increased local 
heat transfer rates. Fig. 4 and Fig. 5 compare the fringes of the experimental interferograms with 
density gradients constructed from the temperature gradients using the relation d =- dTρ β . Both 
experimental and computational results show ten natural-convection cells with aspect ratio about 
unity and cell size equal to the domain height.  The end cells are distorted due to interactions 
with the side walls.  The simulated figures mirror the experimental figures, with the cells rotating 
in the opposite direction, as two symmetrical stable solutions are possible.  

A series of similar simulations was then performed with adiabatic side walls by varying the 
liquid layer thickness.  The Rayleigh number ( 3 /( )Ra g THρ β µα= ∆ ), characterizing the 
strength of the natural convection, and the fluid properties, included in the Prandtl number 
( Pr /υ α= ), are provided as Case 1B in Table 1.  Fig. 6 compares the simulated results with 
measurements by Rossby (1969) for the same conditions. The Nusselt number at the top surface 
( / /Nu H T T y= ∆ ⋅∂ ∂ ) represents the heat transfer rate relative to pure conduction. The average 
Nu across the top surface increases linearly with the logarithm of Ra. There is slight deviation 
for Ra numbers above 105, (Re numbers above ~1 for this high Pr fluid), which may be due to 
the onset of oscillatory convection. The good agreement seen here validates the adequacy of this 
computational grid and model assumptions for the simulations in this study. 

 
5. Details of the Simulations 

The domain and boundary conditions used for computations of convection in a liquid flux 
layer are shown in Fig. 2. The flux layer is approximated as a two-dimensional rectangular 
domain with a length of 0.7 m and thickness of 0.01 m. This represents a slice through the 
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vertical plane between the narrow faces of a 1.4m wide continuous cast strand, extending from 
the left narrow face to the SEN center. As discussed earlier, this two-dimensional assumption is 
appropriate for slab caster domains which are much longer than their width (~0.05-0.2m), and 
have submerged bifurcated nozzles directed at the narrow faces that produce surface flows in this 
2-D plane.  The depth of the liquid flux layer develops from a balance between the melting of the 
powder, which depends on the rate of heat flow through the layer, and the consumption of liquid 
at the meniscus.  This depth often varies from the narrow face to the submerged entry nozzle, 
according to the flow pattern of the molten steel beneath it. For this study, the flux layer 
thickness is assumed constant at a typical depth of 10mm.  The small effect of the flux 
infiltration into the mold-strand gap is neglected.  

Because of the steep increase in viscosity, the top of the liquid layer is approximated as a flat 
surface at the flux melting temperature. The lower surface is set to the molten steel temperature. 
The value of 1550 oC represents a superheat of about 15oC above the liquidus temperature of 
1535 oC for ultra-low carbon steel (in which %C < 0.01%). The right side of the domain is a 
symmetry plane, so is an adiabatic, free-slip wall. The left side is in contact with the mold, which 
should be a wall at the flux solidification temperature. However, to avoid singularity at the left-
bottom corner, and to represent the effects of flux leaking into the gap between the steel shell and 
the mold, the bottom half of the left wall is given a linear temperature profile.  Table 2 gives the 
standard conditions and properties used in the simulations. 

The shear velocity along the bottom steel flux interface is varied parametrically to investigate 
the effect on convection in the liquid flux layer.  The steel velocity increases from about 0.05 to 
0.4 m⋅s-1 as casting speed increases (Thomas 2003).  To match the interfacial shear stress, the 
liquid flux velocity is much smaller, owing to its higher viscosity.  Specifically, the 
corresponding liquid flux velocity is about 1 to 65 mm⋅s-1 for a typical flux with 0.2 Pa⋅s 
interface viscosity (Larson 1986), based on balancing the interfacial shear stress according to 
previous work (McDavid and Thomas 1996; Sivaramakrishnan 2000).  The bottom velocity also 
varies from zero at the edges to a maximum midway between the narrowface and SEN 
(McDavid and Thomas 1996).  In this work, constant bottom shear velocities from 0 to 200 
mm⋅s-1 are assumed. 

 
5.1. Flux Viscosity 

The viscosity of the liquid flux layer in a continuous caster varies greatly with its composition 
and temperature. Commercial fluxes typically contain mainly Al2O3 (0 ~ 13 %), CaO (22 ~ 
45%), and SiO2 (17 ~ 56%) (Branion 1987), with small amounts of fluorides (NaF, CaF2), alkalis 
(Na2O, K2O) and other basic oxides (MgO, BaO). Increasing the SiO2 content enhances cross 
linking of the silicate chains, and thereby increases viscosity (Pinheiro, Samarasekera et al. 
1994). Increasing Al2O3 content also increases the viscosity (Pinheiro, Samarasekera et al. 1994).  
As Al2O3 is continuously absorbed into flux layer from aluminum-deoxidized steel, its content 
increases up to 30%.  The viscosity of liquid flux decreases with temperature according to an 
Arrhenius equation (Pinheiro, Samarasekera et al. 1994). 

 exp( )EA
RT

µ =  (5) 

As the powder sinters, its viscosity increases greatly, exceeding 104 Pa·s (McDavid and 
Thomas 1996). The inter face between the powder and the liquid often becomes crusty and 
enriched in carbon (Xie, Wu et al. 1991).  Beneath this rigid interface, the viscosity decreases 
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according to the increase in local temperature. Upon re-solidification against the mold at the 
meniscus (left domain wall), the flux viscosity increases according to the cooling rate and its 
crystallinity, but this effect is beyond the scope of the present work. 

There are many empirical equations for flux viscosity. Riboud and Larrecq (1979) give one 
such an equation, based on temperature and composition.  

 /B TATeµ =  (6) 

 
2 3 2 2

ln 20.81 35.75 1.73 5.82 7.02Al O CaO CaF Na OA x x x x= − − + + +  (7) 

 
2 3 2 2

31140 68833 23896 46351 39519Al O CaO CaF Na OB x x x x= + − − −  (8) 

where µ  is viscosity in Pa·s, T is temperature in Kelvin and x is the mole fraction of 
constituent compound. For a typical flux (45% SiO2, 10% Al2O3, 10% CaO, 10%CaF2, 15% 
Na2O), A is 5.6-10 Pa-s-K-1 and B is ~24,000 K.  To characterize a range of fluxes for a 
parametric study, Eq. 6 was transformed to: 
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where T0 is a reference temperature (1773 K), µ0 is a reference viscosity (0.05 Pa⋅s), and B is 
a parameter representing the degree of temperature dependency of the flux viscosity.  Fig. 7 
shows various viscosity curves with this equation for different values of B, that represent the 
artificial fluxes simulated in this work. 

This study also investigates two real industrial fluxes, commonly used in steel plants.  Curves 
of the following form were fitted to measurements of flux viscosity taken from (Larson 1986) 
and (Lanyi and Rosa 1981).   

 0
0

n
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s

T T
T T

µ µ
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where 0µ  is the viscosity at the reference temperature, T0 of 1300 ºC, and Ts is the fitting 
parameter. 

Fig. 8 shows the two viscosity curves. Viscosity curve (a) (Larson 1986) shows the typical 
behavior of a glassy flux, whose viscosity decreases smoothly with increasing temperature. 
Curve (b) (Lanyi and Rosa 1981) depicts a typical crystalline flux, and was chosen to investigate 
behavior where the viscosity drops suddenly from the solid state upon melting.  Except for 
missing the sharp peak near the melting point, the data for this crystalline flux is also reasonably 
approximated using Eq. 10 with B=23,880 K, which is shown as curve (c) in Fig. 8.   

 
5.2. Flux Thermal Properties 

Thermal conductivity of the liquid flux layer varies over a wide range. Since the liquid flux is 
semitransparant, radiation upward from the lower surface (liquid steel) causes additional heat 
transfer. This was approximated by defining a “radiation thermal conductivity” ( Rk ) (Mikrovas, 
Argyropoulos et al. 1991; Susa, Nagata et al. 1993). This treatment is valid for “optically-thick” 
layers, where the product of absorption coefficient and thickness exceeds 3.  This is the case for 
the flux layers of interest here that are 5-15mm thick, and contain at least 0.5%FeO (Taylor and 
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Mills 1988).  The conductivity ( Ck ) of liquid flux with only conduction is about 0.2~0.6 W⋅m-

1⋅K-1 (Taylor and Mills 1988; Mikrovas, Argyropoulos et al. 1991).  Radiation increases this 
significantly, depending on the steel surface temperature and flux melting temperatures (which 
are known), and the flux absorption properties, which are estimated. A typical value of 3 W⋅m-

1⋅K-1 is used for effective conductivity ( eff C Rk k k= + ), as assumed elsewhere (McDavid and 
Thomas 1996). The specific heat of the flux was assumed to be constant at 2000 J⋅kg-1⋅K-1, as 
assumed elsewhere (McDavid and Thomas 1996). Buoyancy is represented by the Boussinesq 
approximation, (section 3) assuming a constant volumetric expansion coefficient β  of 2.4×10-5 
K-1 (McDavid and Thomas 1996). For typical temperature differences across flux layers, 

1Tβ∆ <<  so this approximation is valid. Thus, a constant density of 2500 kg⋅m-3 was adopted.  
 

6. Results and discussion 
6.1. Grid refinement study 

To investigate grid independence, simulations were performed for two grids, 640×32 and 
1280×64, assuming bottom shear velocity of 0.01m⋅s-1 and viscosity curve (a) in Fig. 8. Fig. 9 
compares the velocity and temperature profiles near the right wall, where the largest gradients 
are found. The results differ by less than 1%, so the 640×32 mesh is used for the remaining 
calculations. 

 
6.2. Effect of temperature dependent flux viscosity 

The effect of temperature dependent flux viscosity on natural convection was first studied 
with 13 simulations, based on Eq. 10 with B values ranging from 5,000 K to 23,880 K.  The 
assumed viscosity curves (Fig. 7) represent variations on a real flux (B~24,000 K) but with 
decreasing temperature dependency, and corresponding decreasing viscosity at the upper 
interface (1000ºC).  A case with an extremely low constant viscosity of 0.05 Pa⋅s was also 
performed.  These simulations were done with zero bottom shear velocity in order to first study 
just the effect of viscosity variations.  Other parameters, including domain thickness were 
constant, as given in Table 2.  

The flow, temperature and viscosity fields of the flux layer with intermediate temperature 
variation of viscosity (B=10,000 K) is shown in Fig. 10. The results are generally similar to the 
classic Rayleigh-Benard convection pattern given in Fig. 3 for a constant viscosity.  The size of 
the convection cells, based on the distance between the eyes of the vortices at the center of 
adjacent cells, is roughly equal to the domain height.  The cell shape is roughly square, so the 
number of cells depends on the aspect ratio of the domain.  Slight differences in flow, 
temperature and cell shape arise at the domain ends, owing to the different boundary conditions 
at the side walls. However, these end effects are insignificant due to the large aspect ratio of the 
domain. More importantly, with constant viscosity, the upward and downward plumes have the 
same strength, so the velocity and temperature fields have the same shape when inverted. The 
viscosity variation weakens the convection, and lowers the maximum velocity to ~1 mm⋅s-1, 
compared with 2 mm⋅s-1 with the constant viscosity case of 0.05 Pa⋅s. This damping of the 
convection reduces the temperature gradients and heat transfer. If the viscosity – temperature 
relationship was linear, then the viscosity and temperature fields would appear the same.  
However, the nonlinear viscosity variation with temperature also causes the appearance of the 
viscosity field to differ from the temperature field.   
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As the viscosity variation is increased (increasing B), the higher viscosity progressively 
weakens natural convection until the convection cells completely disappear. Fig. 11 shows 
results for the strong viscosity variation of a typical real flux (B=23,880 K), where natural 
convection is suppressed. The velocity field is almost stagnant. The maximum velocity is only 
~0.1 mm⋅s-1, caused only by the boundary condition at the left wall. The nearly linear 
temperature field corresponds to pure conduction with the minor end effect.  

 
6.3. Effect of Flux Layer Thickness 

Increasing thickness of the liquid flux layer promotes natural convection. The effect of 
increasing flux layer thickness was investigated for thicknesses between ~10 mm and ~20 mm 
for a real flux (curve c in Table 3 and Fig. 7) and other conditions given in Table 2.  Fig. 12 
shows results for the same conditions as Table 2 except that the layer thickness is increased to 
15.92 mm. With the increased thickness, the natural convection is no longer completely 
suppressed. The maximum velocity increases to 1 mm⋅s-1. The shape of the convection cells 
changes, as flow is restricted mainly to the lower part of the domain where the fluid is less 
viscous. Flow in the top portion is nearly stagnant. Each convection cell is smaller, and has a 
width to height aspect ratio of only 0.63, if the inactive region at the top of the cell is included.  

 
6.4. Heat Transfer Rates 

The rate of heat transfer through the flux layers is presented in Fig. 13 in terms of the average 
Nusselt number across the top surface as a function of the Rayleigh number. Results for the two 
sets of simulations (varying B and varying thickness) are compared with theoretical and 
experimental values for constant viscosity. The classic results for constant viscosity increase Ra 
by increasing domain thickness and / or temperature difference across the layer.  For the set of 
simulations with varying temperature dependency, increasing Ra is obtained by decreasing the 
value of B, which decreases the average viscosity (while other parameters are constant, as given 
in Table 2).  For the second set of simulations, the Ra is increased by increasing the domain 
thickness (while viscosity is held the same at B=23,880 K). As expected, natural convection 
increases by a factor of 2 or 3 with increasing Ra. For a fluid with variable viscosity, a 
characteristic viscosity is needed to define the Ra number. Following (Booker 1976) the 
Rayleigh number was evaluated here using the viscosity at the mean temperature of top and 
bottom boundaries (1275ºC).  

Based on linear stability theory, the minimum Rayleigh number to start natural convection, 
Rac, is 1707 for a constant viscosity fluid (Schluter, Lortz et al. 1965). For the fluids with 
temperature dependent viscosity considered in this work, the critical Ra number was determined 
by fitting the simulation results to the following Nu-Ra correlation developed for constant-
viscosity large-Pr fluids (Schluter, Lortz et al. 1965): 

 ( 1)

c

Ra Nu C
Ra Ra

−
=

−
 (11) 

This equation is only valid for Ra larger than Rac and less than about 3 Rac.  The constant C 
increased from 1.43 for constant viscosity (Schluter, Lortz et al. 1965) to 1.827 for the variable 
viscosity case.  The critical Ra number, at the Nu=1 intercept (pure conduction), increased to 
2285.  The higher critical Rayleigh number is consistent with the higher viscosity region 
suppressing natural convection cells.  Basing the viscosity on the average temperature and using 
Eq. 11 with C=1.43 underestimates this critical Ra, which agrees with similar findings based on 
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experiments by (Booker 1976). As Ra increases, the temperature dependency of the viscosity 
decreases, becoming closer to a constant viscosity, so the curve approaches the constant viscosity 
curve.  

It is further seen that the critical Ra for changing flux layer thickness is 2403 and the curve is 
translated to the right, relative to constant viscosity results. This critical Ra exceeds that of the 
other sets as expected, because it was based on the viscosity function with the largest value 
(B=23,880 K). The constant in Eq. 11 increases to 1.446. The curve based on temperature-
dependent viscosity falls between the curves based on constant viscosity and variable layer 
thickness. These results demonstrate that Ra number alone does not provide sufficient 
information to characterize the natural convection strength for real fluids where viscosity varies 
with temperature.   

 
6.5. Effect of bottom shear velocity 

In a real steel caster, the liquid flux layer floating on top of the steel free surface in the mold is 
always subject to a shear velocity on its bottom surface. This shear velocity greatly affects flow 
and heat transfer in the liquid flux. Increasing this velocity causes the steel flux interface to 
become wavy, with flow and thickness variations known as “level fluctuations”.  If it becomes 
too large, liquid flux may be entrained into molten steel to form inclusion defects in the final 
product. The shear velocity also greatly affects heat conduction across the flux layer. In this 
work, we have investigated the effect of controlled shear velocity on the convection in the liquid 
flux layer. The bottom surface is assumed to remain flat with a constant domain thickness.  
Simulations are performed for the three viscosity curves for real fluxes given in Table 3 and Fig. 
8.   

The Rayleigh numbers calculated for viscosity curves (a), (b), and (c) (based on the viscosity 
at the average temperature) are 353, 1375 and 1239 respectively.  The results in Fig. 13 show 
that the Ra numbers for all three cases are below the smallest critical Ra number, so no natural 
convection cells are expected.  Applying shear velocity to the bottom surface further suppresses 
the formation of natural convection cells.  The simulation results confirm this for all cases.  

Fig. 14 shows typical flow, temperature and viscosity fields for the liquid flux layer 
(corresponding to viscosity curve (a)) subjected to a bottom shear velocity of 0.1 m⋅s-1. The 
results for all three viscosity curves are very similar.  This shows that accurate modeling of the 
sharp increase in viscosity near the solidification temperature is not important, which is logical 
for very high viscosities.  The flow fields share the common feature of one large recirculation 
region. The temperature fields feature larger temperature gradients at the right end of the domain 
caused by upward turning of the flow and almost pure conduction in the center region. This is 
because the flow is essentially stratified and laminar, so there is no vertical mixing or convective 
heat transfer.  

In simulations shown in Figs. 10 and 12 where there is natural convection, the heat transfer 
rate varies in an oscillatory manner across the length of the top surface. The peaks and valleys 
correspond to upward and downward moving plumes. When the bottom shear velocity generates 
a single recirculation loop, the heat transfer across the domain is greatly skewed, with a large 
(negative) maximum towards the right wall on the top surface.  The bottom surface has an even 
larger maximum at the lower left corner. These skewed distributions, shown in Fig. 15, should be 
considered, in addition to the average heat transfer.  

The effect of bottom shear velocity on the horizontal velocity profile at the center of the 
domain is shown in Fig. 16 for viscosity curve (a). The interior velocities logically increase with 
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bottom shear velocity. The flow direction changes at a height of 16-20% of the layer thickness. 
The height of this eddy center increases slightly with bottom shear velocity. Above 0.0086 m, the 
velocity diminishes to zero due to the high viscosity in this region. This makes the profile deviate 
from the parabolic profile of Couette flow. The vertical velocities are negligible, owing to the 
large aspect ratio of the domain. 

The corresponding temperature profiles are shown in Fig. 17. With small bottom shear 
velocity, the flow at the domain ends does not affect flow near the center, so the temperature 
profile is linear as in pure conduction. With increasing bottom shear velocity, the end effects 
extend towards the center and the temperature profile departs from linearity. Fig. 18 shows the 
viscosity profiles, which vary nonlinearly according to the temperature.  

The effect of different flux viscosity curves on the velocity profile is shown in Figs. 19 and 
20.  The relationship between shear stress and bottom velocity is given in Fig. 21, is computed 
from these results. In addition to the flux viscosity profile, this relationship depends on thickness 
of the flux layer, (10 mm here) and the interface temperature.  The interface temperature is that 
of the molten steel, which is always around 1550 oC.  This figure also shows the corresponding 
velocities in the steel near the top of the molten pool, just outside the boundary layer at the 
interface.  These were computed using the logarithmic relationship for turbulent boundary layers 
(McDavid and Thomas 1996; Sivaramakrishnan 2000). 

For conditions of constant shear stress across the bottom surface, Fig. 20 shows that the 
velocities increase greatly from flux (a) to (b) to (c).  This is due to the decreasing bottom 
surface viscosity, from flux curves (a) to (b) to (c).  The average viscosity is actually lowest for 
flux (b), owing to its higher average temperature in the domain.  The results are compared in Fig. 
19 for constant bottom shear velocity.  The height of the eddy center is highest for flux (b) 
(0.0024 m), owing to its viscosity profile (Fig. 8) which is relatively constant over most of the 
domain, except for the sharp increase at the very top. For the same reason, the stagnant region 
near the top is smaller with viscosity curve (b). The temperature profiles appear similar for all 
three fluxes and deviate only slightly from linearity for practical values of bottom shear velocity. 

In the absence of natural convection cells, the flow pattern with a steady bottom shear 
velocity in this rectangular domain is stratified and there is no convective heat transfer, except 
near the ends.  The rate of heat transfer, expressed in terms of Nu number, is shown in Fig. 22 as 
a function of bottom shear velocity.  It can be seen that Nu increases almost linearly with shear 
velocity.  This is due to extension of the end effects with increasing circulation velocity in the 
domain.  The rate of increase depends on the viscosity.  The Nu number increases fastest for case 
(b), which has smallest average viscosity, and slowest for case (a), which has largest. This is 
because the end effect extends farther for the lower viscosity.  The corresponding results with 
velocity in the molten steel are shown in Fig. 23.  The trends are similar, except the curves 
increase logarithmically, owing to the nonlinear relationship between interface shear stress and 
velocity in the turbulent steel (Fig. 21). 

The increase in heat transfer rate with interface shear velocity agrees with previous findings 
(McDavid and Thomas 1996; Sivaramakrishnan 2000).  It is expected from operating experience 
that increasing steel velocity increases heat transfer in the liquid flux pool.  This in turn increases 
the melting rate at the flux / powder interface and increases the liquid flux layer thickness. 

The maximum Nu, for bottom shear velocity of 0.2 m⋅s-1, is only about 2.3. Most liquid flux 
layers are subject to shear velocity less than 0.05 m⋅s-1, where the Nu is less than 1.3. These 
small values show that forced convection from the bottom shear velocity produces only modest 
increases in heat transfer above the value for pure conduction.  It is much smaller than the 
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increase resulting from natural convection.  This work suggests that plant observations of larger 
increases are likely due to phenomena not considered here.  These include transient oscillations 
suggested by the higher Re numbers in Table 3), fluctuations and break-up of the bottom 
interface shape, caused by bubble motion, turbulent flow of the molten metal beneath the layer, 
and even slag emulsification.  In addition, higher or time-varying recirculation velocities in the 
domain may enhance mixing within the sintering flux above the top interface.  This would 
increase the local kinetics of melting, resulting in higher effective conductivity, and a thicker 
liquid layer.  Such phenomena should be investigated in future work.  

 
7. Summary 

Computational models are used to simulate 2-D fluid flow and heat transfer in the liquid flux 
layer above a molten metal surface, such as encountered in the continuous casting of steel.  The 
model includes the effects of natural convection, temperature-dependent viscosity, and shear 
velocity across the bottom surface.  It is found that the Ra number for realistic liquid slag layers 
varies near the critical Ra number for the onset of natural convection.  For fluxes with 
temperature-dependent viscosity, the variation of Nu with Ra is analogous to correlations for 
fluids with constant viscosity evaluated at the mean temperature, but the critical Ra number is 
larger. The increase in Nu number with layer thickness is also quantified for realistic fluxes.   

For thin layers of realistic fluxes, natural convection is suppressed, so Nu increases linearly 
with increase of bottom shear velocity. The increase is greater with decreasing average viscosity. 
The increase of heat transfer above pure conduction is only due to end effects, and hence 
depends on the dimensions of the layer.  For the flat interface shape investigated here, this 
increase is only one to three fold.  Larger increases observed in practice could be due to 
phenomena not included in these computations. 
 
Acknowledgements 

The authors thank the National Science Foundation (Grant DMI-01-15486) which made this 
research possible.  The work is also supported by the member companies of the Continuous 
Casting Consortium at University of Illinois at Urbana-Champaign (UIUC).  Special thanks are 
due to National Center for Supercomputing Applications (NCSA) at UIUC for computational 
facilities and to FLUENT, Inc.for the FLUENT code. 



B. Zhao, S. P. Vanka, & B.G. Thomas, Int. J. Heat & Fluid Flow, 2005, Vol. 26, pp. 105-118 

 12

 
References 
Fluent V6.1. (2003). Fluent Inc., Lebanon, New Hampshire, www.fluent.com. 
  
Booker, J. R. (1976). Thermal Convection with Strongly Temperature-dependent Viscosity. J. 
Fluid Mech. 76: 741-754. 
  
Boussinesq, J. (1903). Théorie analytique de la chaleur. Paris: Gathier-Villars 2. 
  
Branion, R. V. (1987). Mold Flux for Continuous Casting. Iron and Steel Society. 
  
Goldstein, R. J., H. D. Chiang, et al. (1990). High-Rayleigh-number Convection in a Horizontal 
Enclosure. J. Fluid Mech. 213: 111-126. 
  
Kirchartz, K. R. and H. Oertel. Jr. (1988). Three-dimensional thermal cellular convection in 
rectangular boxes. J. Fluid Mech. 192: 249-186. 
  
Koschmieder, E. L. and S. G. Pallas (1974). Heat Transfer Through a Shallow, Horizontal 
Convecting Fluid Layer. Int. J. Heat Mass Transfer 17: 991-1002. 
  
Lanyi, M. D. and C. J. Rosa (1981). Viscosity of Casting Fluxes Used During Continuous 
Casting of Steel. Metallurgical and Materials Transactions B 12B: 287-298. 
  
Larson, D. (1986). Criteria for Selecting Mold Powders to Optimize Continuous Cast Steel 
Quality. Industrial Heating 53: 16-19. 
  
McDavid, R. M. and B. G. Thomas (1996). Flow and Thermal Behavior of the Top Surface 
Flux/Powder Layers in Continuous Casting Molds. Metallurgical and Materials Transactions B 
27B: 672-685. 
  
Mikrovas, A. C., S. A. Argyropoulos, et al. (1991). Heat Transfer Characteristics of Molten 
Slags. Ironmaking and Steelmaking 18(3): 169-182. 
  
Mohamad, A. A. and R. Viskanta (1992). Laminar Flow and Heat Transfer in Rayleigh-Benard 
Convection with Shear. Phys. Fluids A 4(10): 2131-2140. 
  
Pinheiro, C. A., I. V. Samarasekera, et al. (1994). Mold Flux for Continuous Casting of Steel. 
Iron and Steel Maker: 12-14. 
  
Riboud, P. V. and M. Larrecq (1979). Steelmaking Proceedings. ISS-AIME 62(1979): 78-92. 
  
Rossby, H. T. (1969). A Atudy of Benard Convection with and without Rotation. J. Fluid Mech. 
36: 309-335. 
  
Schluter, A., D. Lortz, et al. (1965). On the Stability of Steady Finite Amplitude Convection. J. 
Fluid Mech. 23: 129-144. 



B. Zhao, S. P. Vanka, & B.G. Thomas, Int. J. Heat & Fluid Flow, 2005, Vol. 26, pp. 105-118 

 13

  
Sivaramakrishnan, S. (2000). Large Eddy Simulation, Particle Image Velocimetry in the Study of 
Mold Transients in Continuous Casting of Steel and Heat Transfer through Molten Slag Layers. 
M.S. Thesis, University of Illinois at Urbana-Champaign. 
  
Susa, M., K. Nagata, et al. (1993). Absorption Coefficients and Refractive Indices of Synthetic 
Glassy Slags Containing Transition Metal Oxides. Ironmaking and Steelmaking 20(5): 372-378. 
  
Tannehill, J. C., D. A. Anderson, et al. (1997). Computational Fluid Mechanics and Heat 
Transfer (Second Edition). Taylor & Francis, Washington. 
  
Taylor, R. and K. C. Mills (1988). Physical Properties of Casting Powders: Part3 Thermal 
Conductivities of Casting Powders. Ironmaking and Steelmaking 15(4): 187-194. 
  
Thomas, B. G. (2003). Continuous Casting Operation: Fluid Flow. Making, Shaping and 
Treating of Steel: Continuous Casting, A. Cramb, AISE Steel Foundation, Pittsburgh, PA 5: 
14.1-14.41. 
  
Xie, B., J. Wu, et al. (1991). Study on Amount and Scheme of Carbon Mixed in CC Mold 
Fluxes. Steelmaking Conference Proceedings 74: 647-651. 
  
 



14 

Table 1 Parameters for validation cases 
Table 2 Parameters for variable viscosity and thickness simulations 
Table 3 Parameters for shear velocity simulations 
 

Fig. 1 Schematic of mold flux layer 
Fig. 2 Simulation domain and boundary conditions 
Fig. 3 Velocity and temperature fields of Rayleigh-Benard convection (Case 1A)  
Fig. 4 Contours of vertical density gradient, above from numerical simulation (Case 1A), 

bottom from experiment (Kirchartz and Oertel 1988) 
Fig. 5 Contours of horizontal density gradient, above from numerical simulation (Case 

1A), bottom from experiment (Kirchartz and Oertel 1988) 
Fig. 6 Change of Nu with respect to Ra (Case 1B) 
Fig. 7 Flux viscosity curves used for variable viscosity study 
Fig. 8 Viscosity of two real fluxes (measured points) and three models approximations 

(lines) 
Fig. 9 Temperature and velocity profile from grid refinement study (x=0.695m, viscosity 

curve a and ub=0.01 m⋅s-1) 
Fig. 10 Flow, temperature and viscosity field of liquid flux layer with variable viscosity 

(B=10000) 
Fig. 11 Flow, temperature and viscosity field of liquid flux layer with variable viscosity 

(B=23880) 
Fig. 12 Flow, temperature and viscosity field of liquid flux layer with variable viscosity 

(B=23880, modified thickness, Ra=5,000) 
Fig. 13 Heat flow increase as a function of convection strength (symbols are 

computations and lines are curve fits) 
Fig. 14 Velocity field (top); temperature field (middle) and Viscosity field (bottom) of 

liquid flux layer with variable viscosity (a) and bottom shear velocity 0.1 m⋅s-1 
Fig. 15 Nu distribution on the top and bottom of flux layer (viscosity a and bottom shear 

velocity 0.1 m⋅s-1) 
Fig. 16 Velocity profile across the domain thickness (centerline; flux a) 
Fig. 17 Temperature profile across the domain thickness (centerline; flux a) 
Fig. 18 Viscosity profile across the domain thickness (centerline; flux a) 
Fig. 19 Effect of flux viscosity on the velocity profile (ub=0.06 m⋅s-1) 
Fig. 20 Effect of flux viscosity on the velocity profile (interfacial shear stress equals 5 

N⋅m-2) 
Fig. 21 Relationship between interfacial shear stress and flux/steel velocity 
Fig. 22 Nu number as a function of bottom shear velocity 
Fig. 23 Nu number as a function of steel velocity 
 
 



15 

Table 1 Parameters for validation cases 

 Case 1A Case 1B 
Domain Length L (m) 0.1 0.111125 
Domain Thickness H (m) 0.01 0.0054 ~ 0.01465 
  
Density ρ (kg⋅m-3) 1000 960.3 
Molecular Viscosity µ (Pa⋅s) 0.178 0.0195 
Thermal Conductivity k (W⋅m-1⋅K-1) 0.1 0.14154 
Specific Heat Cp (J⋅kg-1⋅K-1) 1000 1453.2 
Thermal Expansion Coefficient β  (K-1) 0.001453 0.00107 
  
Temperature Difference ∆T (K) 5 5 
Gravity Constant g (m⋅s-2) 9.8 9.8 
  
Pr Number µ/(ρα) 1780 200.21 
Ra Number ρgβ∆TH3/(µα) 4000 4000 ~ 80000 
Re Number vmax Hρ/µ 0.01 0.01 ~ 0.82  

 
 
 
 
 

Table 2 Parameters for variable viscosity and thickness simulations 

Domain Length L (m) 0.7 
Domain Thickness H (m) 0.01 
  
Density ρ (kg⋅m-3) 2500 
Viscosity µ (Pa⋅s) f(T) 
Thermal Conductivity keff (W⋅m-1⋅K-1) 3 
Specific Heat Cp (J⋅kg-1⋅K-1) 2000 
Thermal Expansion Coefficient β (K-1) 2.4x10-5 
  
Top temperature, Tc (oC) 1000 
Bottom temperature, Th (°C) 1550 
Reynolds Number, vmax H ρ / (µ=.05) 1.04 
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Table 3 Parameters for shear velocity simulations 

 Flux (a) Flux (b) Flux (c) 
Equation 9 9 10 
B - - 23,880 
Reference viscosity µ0 (Pa·s) 0.87 0.39 0.05 
Reference temperature T0 (oC) 1300 1300 1550 
Solidification Temperature Ts (oC) 850 1125 - 
n 3.2 1.3 - 
    
Top temperature Tc (oC) 850 1125 1000 
Bottom temperature Th (oC) 1550 1550 1550 
Reynolds number vmax H ρ / µ0  23.4 40.4 100.0 
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Fig. 1 Schematic of mold flux layer 

 

 
Fig. 2 Simulation domain and boundary conditions 
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Fig. 3 Velocity and temperature fields of Rayleigh-Benard convection (Case 1A) 

 
 

 

 
Fig. 4 Contours of vertical density gradient, above from numerical simulation (Case 1A), 

bottom from experiment (Kirchartz and Oertel 1988) 

 
 

 

 
Fig. 5 Contours of horizontal density gradient, above from numerical simulation (Case 

1A), bottom from experiment (Kirchartz and Oertel 1988) 
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Fig. 6 Change of Nu with respect to Ra (Case 1B) 
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Fig. 7 Flux viscosity curves used for variable viscosity study 

 



20 

T (K)

T (°C)

µ
(P

a.
s)

1200 1300 1400 1500 1600 1700 1800

900 1000 1100 1200 1300 1400 1500

10-2

10-1

100

101

102

103

104

105

106

Larson (1986)
Flux curve (a)
Lanyi (1981)
Flux curve (b)
Flux curve (c)

 
Fig. 8 Viscosity of two real fluxes (measured points) and three models approximations 

(lines) 
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Fig. 9 Temperature and velocity profile from grid refinement study (x=0.695m, viscosity 

curve a and ub=0.01 m⋅s-1)   
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Fig. 13 Heat flow increase as a function of convection strength (symbols are 
computations and lines are curve fits) 

 



25 

1273 1328 1383 1438 1493 1548 1603 1658 1713 1768 1823
T (K)

y
(m

)

0 0.01
0

0.005

0.01

x (m)0.34 0.35 0.69 0.7

y
(m

)

0 0.01
0

0.005

0.01 0.05 m/s

x (m)0.34 0.35 0.69 0.7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
µ (Pa.s)

y
(m

)

0 0.01
0

0.005

0.01

x (m)0.34 0.35 0.69 0.7  
Fig. 14 Velocity field (top); temperature field (middle) and Viscosity field (bottom) of liquid flux layer with variable viscosity (a) and 

bottom shear velocity 0.1 m⋅s-1



26 

x (m)

N
u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-5

0

5

10

15

20

25 ub=0.020 m/s
ub=0.040 m/s
ub=0.040 m/s
ub=0.040 m/s
ub=0.040 m/s

Bottom

Top

 
Fig. 15 Nu distribution on the top and bottom of flux layer (viscosity a and bottom shear 

velocity 0.1 m⋅s-1) 
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Fig. 16 Velocity profile across the domain thickness (centerline; flux a) 
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Fig. 17 Temperature profile across the domain thickness (centerline; flux a) 
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Fig. 18 Viscosity profile across the domain thickness (centerline; flux a) 

 



28 

u (m/s)

y
(m

)

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Flux (a)
Flux (b)
Flux(c)

 
Fig. 19 Effect of flux viscosity on the velocity profile (ub=0.06 m⋅s-1) 
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Fig. 20 Effect of flux viscosity on the velocity profile (interfacial shear stress equals 5 

N⋅m-2) 
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Fig. 21 Relationship between interfacial shear stress and flux/steel velocity 
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Fig. 22 Nu number as a function of bottom shear velocity 
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Fig. 23 Nu number as a function of steel velocity 


