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A coupled finite-element model, CON2D, has been developed to simulate temperature, 
stress, and shape development during the continuous casting of steel, both in and below the 
mold.  The model simulates a transverse section of the strand in generalized plane strain as it 
moves down at the casting speed.  It includes the effects of heat conduction, solidification, 
non-uniform superheat dissipation due to turbulent fluid flow, mutual dependence of the heat 
transfer and shrinkage on the size of the interfacial gap, taper and thermal distortion of the 
mold.  The stress model features an elastic-viscoplastic creep constitutive equation that 
accounts for the different responses of the liquid, semi-solid, delta-ferrite, and austenite phases.  
Functions depending on temperature and composition are employed for properties such as 
thermal linear expansion.  A contact algorithm is used to prevent penetration of the shell into 
the mold wall due to the internal liquid pressure.  An efficient two-step algorithm is used to 
integrate these highly non-linear equations.  The model is validated with an analytical solution 
for both temperature and stress in a solidifying slab.  It is applied to simulate continuous 
casting of a 120mm billet and compares favorably with plant measurements of mold wall 
temperature, total heat removal and shell thickness, including thinning of the corner.  The 
model is ready to investigate issues in continuous casting such as mold taper optimization, 
minimum shell thickness to avoid breakouts, and maximum casting speed to avoid hot tear 
crack formation due to submold bulging.  
 

I.  INTRODUCTION 
Computational models are important tools to gain insight into thermal and mechanical 

behavior during complex manufacturing processes such as the continuous casting of steel 
billets.  This process features many interacting phenomena which challenge modeling 
methods, shown in Figure 1(a).  Starting with the turbulent flow of molten steel into the mold 
cavity, superheat is dissipated during flow recirculation in the liquid pool prior to solidifying a 
shell against the walls of a water cooled copper mold.  Heat transfer is controlled by conduction 
through the solidifying steel shell, the mold and especially the size and properties of the 
interfacial layers between them.  After initial solidification at the meniscus, the shell tends to 
shrink away from the mold walls due to thermal contraction.  Over most of the strand surface, 
internal “ferrostatic pressure” from the head of molten metal maintains good contact between 
the shell and the mold.  However, shrinkage near the corners may create gaps or intermittent 
contact, which greatly lowers the local cooling rate.  The extent of the gap depends on the 
composition-dependent shrinkage of the steel shell, its creep resistance, the casting speed, 
taper and thermal distortion of the mold walls and the thermal properties of the material filling 
the interfacial gap.  The mechanical behavior of the shell also controls the formation of defects 
such as hot-tear cracks and breakouts, and depends on thermal shrinkage, high-temperature 
inelastic stress generation rate, solid-state phase transformations, temperature, steel 
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composition, multidimensional stress state and deformation rate.  The harsh environment of the 
steel plant makes it difficult to conduct experiments during the process. To improve insight 
into these phenomena demands sophisticated mathematical models, to aid the traditional tools 
of physical models, lab, and plant experiments. 

A thermal-mechanical finite-element model that incorporates the above phenomena, 
CON2D, has been developed in the Metals Processing Simulation Laboratory at UIUC over the 
past decade [1-4] with several applications [5-12]. After a brief literature review, this paper 
describes the features of the CON2D model.  It then presents its validation with analytical 
solutions and a simulation of a continuous steel billet casting process where plant 
measurements were available for comparison.  

 
II.  PREVIOUS WORK 

Many previous computational models have investigated thermal stress during the 
continuous casting of steel including models of billet casting [13-19], beam blanks[20], slab casting 
[2, 6, 11, 13, 14, 21-31], and thin-slab casting [32-34].  Brimacombe, Grill, and coworkers first applied 
computational thermal stress models of a 2-D billet section under plain stress [13, 14] as it moved 
down the caster.  These and similar early models [21-23] revealed important insights into crack 
formation, such as the need to avoid reheating.  This infant stage of computational stress 
modeling was qualitative due to the lack of material properties at high temperature, a simple 
elastic-plastic constitutive model, and course meshes due to computer limitations.   

Rammerstorfer et. al. added a separate creep function in developing a 
thermo-visco-elastic-plastic stress model of a transient 1-D slice domain through a slab [24].  
Kristiansson [15] advanced the traveling slice model with stepwise coupling of the thermal and 
stress computations within a 2-D billet section, based on the interfacial gap between the mold 
and shell.  This model also featured different creep constants for modeling austenite and 
δ-ferrite, and temperature-dependent properties.  Similar models were developed for slab 
sections [26], including some that assumed plane strain [27].   Kelly et. al. [16] developed an 
axisymmetric model of coupled thermal stress in round billets to study the effect of carbon 
content on the formation of longitudinal cracks.  Elastic stress analysis was performed on the 
mold and the billet to determine the interfacial gap profile, followed by elastic-plastic stress 
analysis of the billet.   

Recently, several improved models have been developed of thermal-mechanical behavior of 
continuous-cast steel.  Boehmer et. al. [17] coupled a 3-D in-house heat flow model and 2-D 
thermal stress model in ADINA, to analyze a continuous-cast billet section in plane stress. An 
elastoplastic constitutive model was adopted including strain-rate dependent strength and 
plasticity, and a separate creep model, if necessary.  The solidifying solid was discretized with 
a deforming grid and liquid elements were deleted from the stress simulation.   

A transverse slice model, AMEC2D, was developed to simulate beam-blank casting, 
including elastic-viscoplastic behavior and a simple fluid flow model to account for superheat 
transport in the liquid pool [20].  Park et al. applied AMEC2D to investigate the effect of mold 
corner radius on shell growth and longitudinal corner cracks in billets [18].  This model assumed 
plane stress and neglected the effects of superheat variations. 

Fachinotti et. al. developed Arbitrary Lagrangian Eulerian (ALE) [31] and mixed 
Eulerian-Lagrangian [19] thermal mechanical models, to analyze stress/strain distributions in 
continuous-cast round steel billets.  These rigorous models adopt elastic-viscoplastic material 
behavior with temperature and history dependent material parameters, but are computationally 
intensive and assume 2-D axisymmetry.  They show that the generalized plane strain 
assumption matches closest to the real behavior, short of a full 3-D analysis. 
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Many important related aspects of continuous casting have been modeled in depth and are 
discussed elsewhere [35, 36], including fluid flow in the molten steel pool [37], nonequilibrium 
solidification of the shell [35] [38], thermal distortion of the mold [39], bulging and bending of the 
strand below the mold [40, 41] and crack prediction [35] [42]. 

Although they have generated important insights, previous thermal-mechanical models of 
shell solidification in the mold still oversimplify some phenomena or are too computationally 
expensive to simulate large scale problems with sufficient mesh and time step refinement to be 
accurate.  There is still a need for better models to gain more quantitative insight into 
thermal-mechanical behavior and crack prediction in continuous casting of steel. 

 
III.  GOVERNING EQUATIONS 

The model solves the transient heat conduction equation and corresponding force 
equilibrium equation for temperature, displacement, strain, and stress in a transverse 
Lagrangian reference frame moving downward with the steel shell at the casting speed, as 
shown in Figure 1(a).  Both 2-D and 1-D slice domains are simulated, as shown in Figure 1(b) 
and (c) respectively. 

 
A. Heat Transfer and Solidification Model   

The model first solves the transient energy balance Eq. [1], where H(T) and k(T) are 
isotropic temperature dependent enthalpy and conductivity [43].  

 ( )( ) ( )H T k T T
T

ρ ∂
= ∇ ⋅ ∇

∂
 [1] 

A 2-D simplification of the full 3-D process is reasonable because axial (z-direction) heat 
conduction is negligible relative to advection at the high Péclet number of this steel continuous 
casting process ( / 2098vL α = 1). 

Applying the chain rule to the left hand side of Eq. [1] isolates the specific heat, pc , and 
latent heat, fL , together in a convenient function, ( )H T T∂ ∂ , in Eq. [2].  Heat balance 
numerical errors are lessened by providing an enthalpy-temperature look-up function. 

 ( ) ( ) ( )H T T T Tk T k T
T t x x y y

ρ
 ∂ ∂ ∂ ∂ ∂ ∂    = +      ∂ ∂ ∂ ∂ ∂ ∂      

 [2] 

Boundary conditions can be fixed temperature, heat flux, convection, or a heat resistor 
model across the interfacial layer between the mold wall and the steel surface [43]. The latter 
enables the fully coupled heat transfer and stress analysis described in Section VII-C.  The 
thermal property functions of steels, including conductivity and enthalpy, are given in Section 
X-B. 

 
B. Stress Model   

The general governing equation for the static mechanics problem in this Lagrangian frame 
is given by the force equilibrium balance in Eq. [3] [44]. 

 0bσ ρ∇⋅ + =
% % %%

 [3] 

Below the meniscus region, axial temperature gradients and the corresponding 
displacement gradients are generally small, so it is reasonable to apply a generalized plane 
                                                           
1 0.0167( / sec)v m= , 1( )L m= , 37500( / )kg mρ = , 0.6( / )pc kJ kgK= , 40( / )K W mK=  
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strain assumption in the casting direction.  This enables a 2-D transient stress analysis to 
provide a reasonable approximation of the complete 3-D stress state.  Although this is not quite 
as accurate as a fully 3-D analysis [31], this slice model approach can realistically model the 
entire continuous casting process, with the possible exception of the meniscus region, at a 
relatively small computational cost. 

The incremental governing equations acting over each time step, t∆ , for the generalized 
plane strain condition, simplify Eq. [3] to the following: 
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 [4] 

Incremental total strains {∆ε} are related to displacements {ux, uy, uz} according to Eq. [5].   
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 [5] 

There are no body forces because the ferrostatic pressure caused by gravity acting on the 
liquid is instead applied through internal boundary conditions described in Section IX-B.  
Besides the regular boundary conditions like fixed displacements and surface tractions, a 
special type of boundary, mold wall constraint, is included in CON2D to model the interactions 
between the mold wall and the steel surface, as addressed in Section VIII-B.  The distorted 
shape of the mold has an important influence on the size of the interfacial gap, heat transfer, 
and consequently stress, so is incorporated as discussed in Section VIII-A.  

Two fold symmetry can be assumed in the current continuous casting application, so the 
constants related to bending, b and c in Eq. [5] and xM∆  and yM∆  in Eq. [4] all vanish and 
∆εz  represents the unconstrained axial (thickness) contraction of each 2-D slice.  

 
IV.  CONSTITUTIVE MODELS 

Increments of stress and elastic strain are related through Hook’s Law, Eq. [6]. Matrix [ ]D  
contains the isotropic temperature-dependent elastic modulus, ( )E T , and Poisson’s ratio, υ , 
given in Eq. [7].  

 { } [ ]{ } [ ]{ }e eD Dσ ε ε∆ = ∆ + ∆  [6] 

where { } { } { } { }T T

x y xy z x y xy zσ σ σ τ σ ε ε ε ε ε= =  
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 [7] 

The incremental total strains, { }ε∆ , in Eq. [5], are composed of elastic, { }eε∆ , thermal, 

{ }thε∆ , inelastic strain, { }inε∆ , and flow strain, { }flowε∆ , components as given in Eq. [8]. 

 { } { } { } { } { }e th in flowε ε ε ε ε∆ = ∆ + ∆ + ∆ + ∆  [8] 

Totals of all strains at a given time, t+∆t, are obtained by accumulating the strain increments 
at each prior time step.  For example, the total strain is accumulated as follows, Eq. [9]: 

 { } { } { }t t t t tε ε ε+∆ +∆= + ∆  [9] 

A. Thermal Strain 
Thermal strains arise due to volume changes caused by both temperature differences and 

phase transformations, including solidification and solid-state phase changes between crystal 
structures, such as austenite and ferrite.  The isotropic thermal strain vector, { }thε∆ , given in 
Eq. [10], is based on the phase fractions and the thermal linear expansion function, TLE, 
discussed in Section X-C. 

 { } ( ){ }( ) ( ) 1 1 0 1 Tt t t t t
th TLE T TLE Tε +∆ +∆∆ = −  [10] 

B. Inelastic Strain 
Inelastic strain includes both strain-rate independent plasticity and time dependent creep. 

Creep is significant at the high temperatures of this process and is indistinguishable from 
plastic strain. Thus, this work adopts a unified constitutive model of the mechanical behavior 
to capture the temperature- and strain-rate sensitivity of high temperature steel. 

The inelastic strain rate, inε& , is described by different constitutive models according to 
microstructural state of the solid steel. 
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in δε −
&  and in γε −

&  are the equivalent inelastic strain rates of ferrite and austenite, respectively., 
as given below.  The inelastic strain rate function follows the ferrite function, (δ or α), 
whenever the phase fraction of ferrite exceeds 10% of the total volume.  This is justified by 
considering the steel with two phases to act as a composite material in which only a small 
amount of the weaker ferrite phase weakens the mechanical strength of the whole material.  
The plain carbon steels treated in this work are assumed to harden isotropically, so the von 
Mises loading surface, associated plasticity and normality hypothesis in the Prandtl-Reuss flow 
law is applied: [45] 

 
'3

2in in

σ
ε ε

σ
= & %& %

%%
 [12] 
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 where inε&
%%

, 'σ
%%

, σ  and inε&  are the plastic strain rate tensor, the deviatoric stress tensor, 
the equivalent stress scalar (or von-Mises effective stress), and equivalent inelastic strain-rate 
scalar, respectively.  The “:” operator means standard term by term tensor multiplication.  In 
this work, the equivalent inelastic strain rate, inε& , bears a sign determined by the direction of 
the maximum principle inelastic strain, as defined in Eq. [13] in order to achieve kinematic 
behavior (Bauschinger effect) during reverse loading.  

 

max
max min

max

min
max min

min

max 11 22 33 min 11 22 33

2 :
3

max( , , ) min( , , )

in in in

in in in in in in

c where c

where

ε ε ε
ε

ε ε ε
ε ε ε
ε

ε ε ε ε ε ε ε ε

 ≥
= = 
 <


= =

& & &
% %% %  [13] 

Eqs. [12] and [13] allow an isotropic scalar to represent the 3-D strain-rate state.   Appendix 
B defines 'σ

%%
, σ , and Eq. [12] in 2-D generalized plane strain form.  Parameter c (+1 or -1) 

makes the equivalent inelastic strain rate have the same sign as the maximum principle 
inelastic strain.  The functions for the inelastic strain rate scalars, inε& , described in Section 
X-D, must be integrated to find { }inε∆  needed in Eq. [8], as described previously in this 
Section. 

 
C. Strain in Liquid Elements 

In this model, the liquid elements are generally given no special treatment regarding 
material properties and finite element assembly.  However, liquid reacts very differently from 
solid under external loads.  It deforms elastically under hydrostatic force like a solid but 
deforms dramatically under shear force.  If any liquid is present in a given finite element, a 
constitutive equation is used to generate an extremely rapid creep (shear) rate:   

 
( )

0
yield yield

flow
yield

cA c c

c

σ σ σ σ
ε

σ σ

 − >= 
≤

&  [14] 

The parameter A is chosen to be 81.5 10×  MPa-1s-1 to match the viscosity of molten steel [46].  
Eq. [14] is another format of the linear viscous equation [43] of the laminar fluid which is a 
reasonable assumption for the liquid steel in the mushy zone.  Liquid deforms under any 
nonzero shear stress according to Newtonian fluid dynamics.  Thus, σyield should be zero.  To 
avoid numerical difficulty, however, σyield is treated as a tolerance accuracy parameter with no 
physical nature and is given a value of 0.01 MPa.   

This method effectively increases shear strain, and thus enforces negligible liquid strength 
and shear stress.  The critical temperature where the liquid fraction is sufficient to make the 
element act as a liquid is the “coherency temperature”, Tcoherency, currently defined equal to the 
solidus temperature. To generalize this scalar strain rate to a multi-dimensional strain vector, 
the same Prandtl-Reuss Eqs. [12] and [13] are used as for the solid, inε& .   

This fixed-grid approach avoids the difficulties of adaptive meshing while allowing strain to 
accumulate in the mushy region. As in the real continuous casting process, the total mass of the 
liquid domain is not constant. The inelastic strain accumulated in the liquid represents mass 
transport due to fluid flow, so is denoted "flow strain".  Positive flow strain indicates fluid 
feeding into the region.  This is important for the prediction of hot tear cracks.  The 
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disadvantage of using this high creep rate function to model liquid is increasing the 
computational difficulty at the solidification front. This requires the use of a very robust local 
iteration algorithm [3]. 

 
V.  FINITE ELEMENT IMPLEMENTATION 

 
A. Heat Transfer and Solidification Model 

The 3-node triangle finite element was employed to approximate temperature in the domain 
as a piece-wise linear function. The standard Galerkin method [44] applied to Eq. [2] gives the 
following global matrix equations. 

 [ ]{ } [ ]{ } { } { }q qsupK T C T F F+ = +&  [15] 

[ ]K  is the conductance matrix including the effect of conductivity k(T), and [ ]C  is the 
capacitance matrix including the effect of specific heat and latent heat in H(T).  Within each 
element, an effective specific heat pec  is evaluated using a spatial averaging technique 
suggested by Lemmon [47]. 
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22pe

H H
x yHc
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 ∂ ∂  +   ∂ ∂∂    = =
∂  ∂ ∂  +   ∂ ∂   

 [16] 

The [K] and [C] matrices are found from their element matrices, given in Appendix A, 
through standard FEM summation over the domain.  A three-level time-stepping method 
proposed by Dupont [48] was adopted to solve Eq. [15].  Temperatures at the current time t+∆t 
are found from the temperatures at the previous two time steps, t and t-∆t. 

 { }1{ } 3
4

t t t tT T T+∆ −∆= +  [17] 

 { }
t t tT TT

t

+∆ −
=  ∆ 

&  [18] 

Substituting Eqs. [17] and [18] into Eq. [15] and rearranging  gives a recursive global matrix 
equation expressing the time and spatial discretization of the heat conduction equation, Eq. [2]. 

 [ ] [ ] { } { } { } [ ]{ } [ ]{ }3 1
4 4

t t t t t
q qsup

C C
K T F F K T T

t t
+∆ −∆ 

+ = + − + ∆ ∆ 
 [19] 

Eq. [19] is solved at each time step for the unknown nodal temperatures { }t tT +∆  using a 

Choleski decomposition solver.[49]  { }qF , and { }qsupF  are the heat flow load vectors containing 
the distributed heat flux at the domain boundary and the super heat flux at the internal moving 
boundary, respectively. On each domain boundary where heat flux is applied, the contributions 
from each element on the boundary are summed as follows: 
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2

ij ij

T
q

boundary elements boundary elements ij ij

q L

F N q dL
q L

 
  = =  
 
  

∑ ∑∫  [20] 

where Lij is the distance between node i and j.  The heat flux function, q , is specified, such 
as equal to qgap given in Section VII. { }qsupF  is calculated similarly with a different set of 
boundary elements, using qsup in Section VII. 

 
B. Stress Model 

Applying the standard Galerkin method to Eqs. [4] ~ [7] gives the following set of linear 
equations over the finite element domain,  

 [ ]{ } { } { } { } { }t tt t t t t t t
th in fp elK u F F F F

+∆+∆ +∆ +∆∆ = ∆ + ∆ + −  [21] 

where [ ]K , { }thF∆ , { }inF∆ , { }fpF , and { }elF  are the stiffness matrix and incremental force 
vectors due to incremental thermal strain, inelastic strain, ferrostatic pressure and external 
surface tractions at specified boundaries, and elastic strain corrections from the previous time 
step, respectively.  Refer to Eqs. [64] - [67] in Appendix B for more details.  At each time step, 
Eq. [21] is solved for the incremental displacements, { }u∆ , using the Choleski method [49] and 
the total displacements are updated via Eq. [22]. 

 { } { } { }t t tu u u+∆ = + ∆  [22] 

 Then, the total strains and stresses are updated from Eqs. [5] and [6], respectively. The 
six-node quadratic-displacement triangle elements use the same grid of nodes that were 
connected into three-node elements for the heat flow calculation.  Further details are given in 
Appendix B. 

 
VI.  INTEGRATION OF THE CONSTITUTIVE MODEL 

Highly strain-rate-dependent inelastic models require a robust numerical integration 
technique to avoid numerical difficulties.  The non-linear equations to be integrated are given 
in Eqs. [23] and [24] by combining Eqs. [6] - [8], neglecting the second term on the right hand 
side of Eq. [6].   

 ( ):t t t t t t t t t t t t t
th in th inDσ ε ε ε ε ε ε+∆ +∆ +∆ +∆ +∆= − − + ∆ − ∆ − ∆

%% % % % % % %%% % % % % % %
 [23] 

 t t t t t
in in inε ε ε+∆ +∆= + ∆  [24] 

The incremental equivalent plastic strain accumulated over a time step is given in Eq. [25] 
based on a highly nonlinear constitutive function, which depends on σ  and inε , which change 
greatly over the time step. 

 ( ), , ,%t t t t t t
in inF T C tε σ ε+∆ +∆ +∆∆ = ∆  [25] 

F  is one of the constitutive functions given in Eqs. [46], [47] or [14] depending on the 
current material state.  Substituting Eqs. [12] and [25] into Eqs. [23] and [24] and using fully 
implicit time stepping method, a new set of evolution equations are obtained as: 
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 ( ) '3ˆ: , , ,%
2

t t
t t t t t t t t t t t t t

th in th in t tD t F T C t
σ

σ ε ε ε ε ε σ ε
σ

+∆
+∆ +∆ +∆ +∆ +∆

+∆

 
= − − + ∆ − ∆ − ∆  

 
& %%

%% % % % % %%% % % % % %
 [26] 

 ( ), , ,%t t t t t t t
in in inF T C tε ε σ ε+∆ +∆ +∆= + ∆  [27] 

Two tensors, t tσ +∆

%%
 and ε̂∆

%%
, and one scalar, t t

inε +∆ , comprise 13 unknown scalar fields for 
3-D problems or 9 unknowns for the 2-D problem here, which require the solution of Eqs. [26] 
and [27].  Zhu implemented an alternating implicit-explicit mixed time integration scheme, 
which is based on an operator-splitting technique that alternates between local and global 
forms of the total strain increment and inelastic strain rate over each pair of successive steps [3].  
Within each time step, t tσ +∆

%%
 and t t

inε +∆  are first solved using a fully implicit time integration 

technique based on the current best estimation of the total strain increment ε̂∆
%%

, which is taken 

from the previous time step tε∆
%%

.  This is a “local step” because it is spatially uncoupled.   

Then, the improved estimates of t tσ +∆

%%
 and t t

inε +∆  from the “local step” are used to solve for 
ε∆
%%

 by explicit finite element spatial integration through Eqs. [21] and [5].  This is a “global 
step”  [3]. 

There is still a tensor unknown in Eq. [26], which makes even the local time integration step 
computationally challenging.  Lush et. al. transformed this tensor equation into a scalar 
equation for isotropic materials with isotropic hardening [50]. 

  ( )* 3 , , ,%t t t t t t t t t t
inF T C tσ σ µ σ ε+∆ +∆ +∆ +∆ +∆= − ∆  [28] 

 where *t tσ +∆  is the equivalent stress of the stress tensor, *t tσ +∆

%%
, defined below. 

 ( )* ˆ:t t t t t t t t t
th in thD tσ ε ε ε ε ε+∆ +∆ +∆= − − + ∆ − ∆&

%% % % % % %%% % % % % %
 [29] 

Eqs. [27] and [28] form a pair of nonlinear scalar equations to solve in the local step for 
estimates of the two unknowns t t

inε +∆  and t tσ +∆ . 
 

Stress Model Numerical Integration Procedure   
Implementing the general 3-D procedure described above for the 2-D generalized plane 

strain assumption, the integration procedure used in CON2D within each time step is 
summarized as follows: 

1. Estimate { }ε̂∆  based on { }u∆  from the previous time step:{ } [ ]{ }ˆ tB uε∆ = ∆ . 

2. Calculate { }* t t
σ

+∆
 , *σ  and { }* '

t t
σ

+∆
, needed to define the direction of the stress vector. 

 { } [ ] { } { } { } { } { }( )* ˆ 1 1 0 1
t t t t t t t Tt t

th in thD tσ ε ε ε ε ε
+∆ +∆ +∆= − − + ∆ − ∆&  [30] 

3. Solve the following two ordinary differential equations simultaneously for t t
inε +∆  and 

ˆ t t+∆σ  at each local Gauss point, using a fully implicit bounded Newton-Raphson 
integration method from Lush [50].  This method gives the best robustness and efficiency 
of several alternative approaches evaluated [3].  Function F is either Kozlowski model III 
for γ, Eq. [46], the power law for δ, Eq. [47], or flow strain for liquid phase Eq. [14]. 
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( )

( )*

ˆ, , ,%

ˆ ˆ3 , , ,%

t t t t t t t
in in in

t tt t t t t t t t
in

F T C t

F T C t

+∆ +∆ +∆

+∆+∆ +∆ +∆ +∆

= + ∆

= − ∆

ε ε σ ε

σ σ µ σ ε
 [31] 

4. Expand this scalar stress estimate into vector form2:  

 { } { }
*

*
*

{ '} 1ˆ ˆ
3

t t
t t Tt t t t

mt t

σσ σ σ δ
σ

+∆
+∆ +∆ +∆

+∆= +  [32] 

5. Calculate t t
inε +∆&  from ˆ t t+∆σ and t t

in
+∆ε using the appropriate F for the local material phase.  

6. Expand this scalar inelastic strain estimate into a vector { }t t
inε +∆
& with the same direction 

as { }ˆ ' t tσ +∆ using Prandtl-Reuss Eq. [12]; Update { } { } { }t t t t t
in in in tε ε ε+∆ +∆= + ∆&  only for 

solidified elements. 
7. Use classic FEM spatial integration (Appendix B) to solve Eq. [21] for { }t tu +∆∆  based on 

{ }t t
inε +∆
& .   

8. Finally, find { }t tε +∆∆  from { }t tu +∆∆ and update { }t tε +∆  and { }t tσ +∆ . 
Overall, this alternating implicit-explicit scheme with the bounded Newton-Raphson 

iteration gives the best robustness and efficiency of several alternative FEM time integration 
approaches evaluated [3]. 

 
VII.  TREATMENT OF THE MOLD - SHELL INTERFACE   

Heat transfer does not depend directly on the force equilibrium equation because the 
mechanical dissipation energy is negligible.  The heat flow and stress models are fully coupled 
with each other, however, when the gap between mold and steel shell is taken into account.  
Shrinkage of the shell tends to increase the thermal resistance across the gap where the shell is 
strong enough to pull away from the mold wall. This leads to hot and weak spots on the shell.  
This interdependence of the gap size and the thermal resistance requires iteration between the 
heat transfer and stress models.  As the gap size is unknown in prior, the heat resistance is also 
unknown.  Thus, iterations within a time step are usually needed.  Contact between the mold 
wall and shell surface is discussed in Section VIII-B. 

 
A. Interface Heat Transfer 

When the coupled heat transfer and thermal stress analysis is performed, the heat transfer 
boundary condition at the steel surface is described by a gap heat resistor model shown in 
Figure 2, with parameter values listed in Table I.  Heat leaves the steel shell via conduction and 
radiation across the interfacial gap.  It is then conducted across the thin copper mold, and 
extracted by cooling water flowing across the back of the mold tube.  The temperature and the 
heat convection coefficient of the cooling water are input from the results of a preliminary 
computation using the CON1D model, described elsewhere [51].  The contact resistance adopted 
in this model is several orders of magnitude larger than the physical contact resistance [46] 
between flat steel and copper surface because it includes the influence of oscillation marks [51].  
The gap thickness is calculated during each iteration from the shell surface displacement and 
the mold wall position, according to the local values of the mold taper and distortion, which are 

                                                           

2 { } { } { }* * *1'
3

t t t t Tt t
mσ σ σ δ

+∆ +∆ +∆= − ;  * * * *t t t t t t t t
m x y zσ σ σ σ+∆ +∆ +∆ +∆= + + ;  { } { }1 1 0 1δ =  
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described in the next section. Once the gap size is determined, the heat flux, qgap, across the 
interfacial layer between the mold wall and steel surface is solved together with the mold hot 
face temperature, Tmold: 

 shell water
gap

gapmold

T Tq
r

−
= −  [33] 

where 

 1

1

gap
contact

gapmold
gapmold

water mold gap
rad contact

gap

d
r

kTr
h k d

h r
k

+
= + +

 
+ +  

 

 

 8 2 25.67 10 ( )( )rad shell mold shell moldh e T T T T−= × + +  

 1
1 1 1

m s

e
ε ε

=
+ +

 

 

8 45.67 10
1 1
shell shell mold water gap

mold
mold gap

mold water mold
mold

water mold

gap
gap contact

gap

e T T r T r
T

r r

d h kr
h k

d
r r

k

−× + +
=

+

+
=

= +

  

  

B. Gap Size Calculation 
The gap thickness, dgap, is estimated for each boundary node at the shell surface, based on 

gaps from the previous iteration, n: 

     

{ }( )1ˆ ˆmax ( ) ,n n t t
gap gap wall gapmin

t t t t t t
wall taper molddist

d u d n d d

where
d d d

+ +∆

+∆ +∆ +∆

= ⋅ −

= −

 [34] 

where {u}, n̂ , dwall, dtaper, dmolddist and dgapmin are the displacement vector at boundary nodes,  
unit normal vector to the mold wall surface, mold wall position, mold wall position change due 
to mold distortion, and the minimum gap thickness, respectively.  A positive dgap, indicates a 
real space between the mold and shell.  

The minimum gap value is set as: 

     gapmin contact gapd r k=  [35] 

It physically represents the effective oscillation mark depth at the shell surface. When the 
calculated gap size is less than this minimum gap size, then, the contact resistance, rcontact, 
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dominates heat transfer between the shell surface and the mold wall. Gap size variation within 
the minimum gap size is assumed not to affect the thermal resistance, which accelerates 
convergence. 

 
C. Thermal – Stress Coupling 

The overall flow of CON2D is shown in Figure 3.  Within each time step, the computation 
alternates between the heat transfer and stress models through the following fully-coupled 
procedure: 
1. The temperature field is solved based on the current best estimation of gap size, from the 

previous time step with Eq. [34].  The initial gap size at the beginning of the simulation is 
simply zero around the strand perimeter as the liquid steel at the meniscus flows to match 
the mold contour. 

2. The incremental thermal strain is evaluated from the temperature field at the current and 
previous time steps, Eq. [10].  The inelastic strain is estimated by integrating Eq. [31] 
following the procedure described in Section VI.  The global matrix equation, Eq. [21], is 
solved for displacements, strains, and stresses using the standard finite element method. 

3. The gap sizes for the next iteration are updated by:  

 ( )1 1ˆ 1n n n
gap gap gapd d dβ β+ += + −   [36] 

where β is chosen to be 0.5. 
4. Finally, step 1 ~ 3 are repeated until the gap size difference between two successive heat 

transfer and stress iterations, n and n+1, is small enough: 

 
( )

( )

21

21

n n
gap gap

nb
diff

n
gap

nb

d d
d

d

+

+

−
=

∑

∑
 [37] 

where nb is the number of boundary nodes. When ddiff becomes smaller than the specified 
“gap tolerance”, dmin, the gap size is considered converged. 
 

VIII.  MOLDELING THE MOLD WALL  
The mold wall affects the calculation in two ways: 1) altering the size of the interfacial gap 

and associated heat transfer between the mold and strand through its distorted shape; and 2) 
constraining the shell from bulging due to the internal ferrostatic pressure. 

 
A. Mold Wall Shape 

The mold wall is defined in CON2D as a function of distance below the meniscus.  The 
shape of the mold varies from its dimensions at the meniscus due to mold taper and mold 
distortion.  The mold is tapered to follow the shrinkage of the steel strand to prevent excessive 
gaps from forming between the mold wall and shell surface, as well as preventing bulging of 
the shell.  Linear taper is defined by providing the percentage per meter as follows:  

 % /
100 2taper c

Taper m Wd v t=  [38]  

where W, vc and t are the mold width, casting speed and current time below the meniscus, 
respectively. As the modeled section of the steel strand moves down from the meniscus, the 
mold wall distorts away from the solidifying shell, and tapers towards it.   
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Mold distortion arises from two main sources, thermal expansion of the mold wall due to 
heating during operation, and mold wear due to friction between the mold and the strand.  For 
the billet casting simulation presented here, mold distortion is considered to be simple thermal 
expansion as follows, ignoring residual distortion and mold wear. 

 ( )02molddist mold
Wd T Tα= −  [39] 

where T  is the average temperature through the mold wall thickness as a function of the 
distance below mold exit, 0T  is the average mold wall temperature where the solid shell begins 
at the meniscus, moldα  is the thermal expansion coefficient of the copper mold tube, and W is 
section width.  

Arbitrary complex mold shapes can be modeled by providing an external data file or 
function with mold wall positions at different distances below the meniscus, and even around 
the perimeter.  For example, complex 3-D mold distortion profiles [52] were used for slab casting 
simulations with CON2D [2, 6].  

 
B. Contact Algorithm for Shell Surface Constraint 

The mold wall provides support to the solidifying shell before it reaches the mold exit.  A 
proper mold wall constraint is needed to prevent the solidifying shell from penetrating the mold 
wall, while also allowing the shell to shrink freely.  Because the exact contact area between the 
mold wall and the solidifying shell is not known a priori, an iterative solution procedure is 
needed. 

Some early finite element models solved contact problems by the Lagrange multiplier 
approach, which introduces new unknowns to the system as well as numerical difficulties [53].  
This work adopts a method developed and implemented by Moitra [2, 6] which is tailored to this 
particular casting problem domain. It solves the contact problem only approximately, but is 
easy to implement and is more stable. Iteration within a time step proceeds as follows.   

At first, the shell is allowed to deform freely without mold constraint.  Then, the 
intermediate shell surface is compared to the current mold wall position.  A fraction of all 
penetrating nodes, identified by Eq. [40], are restrained back to the mold wall position by a 
standard penalty method, and the stress simulation is repeated.   

 { } ˆ wall penu n d d⋅ − < −  [40] 

where dpen is the specified penetration tolerance. Iteration continues until no penetration 
occurs.   

The nodes to be constrained are chosen by checking three scenarios: 
1. In Figure 4(a), a portion of the shell surface with length L penetrates the mold, and the 

maximum penetration is found at the centerline of the strand face.  Those shell boundary 
nodes in the half of this violated length nearest to the face center, Lc, are constrained in 
the next iteration. 

2. In Figure 4(b), the center of the shell surface penetrates the mold but does not penetrate 
the most.  Those violated nodes from the maximum penetration position to the face 
center are constrained in the next iteration. 

3. In Figure 4(c), the center of the shell surface does not penetrate the mold.  That half of the 
violated nodes closest to the face center are constrained in the next iteration. 

Commercial software, such as ABAQUS, generally constrains violated nodes one by one 
until convergence is reached.  The present method is believed to be more computationally 
efficient for the particular quarter mold and behavior of interest in this work.  The friction 
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between the shell and mold surface is ignored in this model. This would need to be added to 
consider phenomena such as transverse cracks due to excessive taper.   

 
IX.  SOLIDIFICATION FRONT TREATMENT  

 
A. Superheat Flux 

Superheat is the amount of heat stored in the liquid steel that needs to be extracted before it 
reaches the liquidus temperature. Superheat is treated in one of two ways: 1) Heat conduction 
method and 2) Superheat flux method.  The heat conduction method simply sets the initial steel 
temperature to the pouring temperature, and increases the conductivity of the liquid by 6.5 
times to crudely approximate the effects of fluid flow. This method equally distributes the 
superheat over the solidification front. In reality, the superheat distribution is uneven due to the 
flow pattern in the liquid pool.  

The second method first obtains the superheat flux distribution from a separate fluid flow 
computation, such as done previously for billets [54]. or slabs [55].  This superheat flux at a given 
location on the strand perimeter is applied to appropriate nodes on the solidification front.  
Specifically, it is applied to the two nodes just below the liquidus in those 3-node elements with 
exactly one node above the liquidus.  This is shown in Figure 5, where the isotherm is the 
liquidus.  The initial liquid temperature is set just above the liquidus, to avoid accounting for 
the superheat twice. 

 
B. Ferrostatic Pressure 

Ferrostatic pressure greatly affects gap formation by encouraging contact between the shell 
and mold, depending on the shell strength.  The ferrostatic pressure is calculated by: 

 pF gzρ=  [41] 

where z is distance of the current slice from the meniscus found from the casting speed and the 
current time.  Ferrostatic pressure is treated as an internal load that pushes the shell toward the 
mold wall, as shown in Figure 5.  It is applied equally to those two nodes just below the 
coherency temperature that belong to those 3-node elements having exactly one of its 3 nodes 
above the Tcoherency isotherm.  It is assembled to the global force vector through Eq. [64] in 
Appendix B, which gives: 

 { } 2

2

p ij

fp
moving boundary elements p ij

F L

F
F L

 
  =  
 
  

∑  [42] 

where Lij is the boundary length between node i and j within a 3-node element. 
 

X.  MATERIAL PROPERTIES 
This work adopts temperature-dependent steel properties chosen to be as realistic as 

possible.   
 

A. Phase Fraction Model 
A pseudo-binary phase diagram for certain plain carbon steels 3  developed from 

measurements by WON [56] is incorporated to produce realistic phase fraction evolution 
                                                           
3 Other compositions besides carbon are: 1.52%Mn, 0.015%S, 0.012%P, 0.34%Si 
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between the solidus and liquidus temperatures. Figure 6 shows the non-equilibrium Fe-C phase 
diagram, which defines the volume fractions of liquid, δ-ferrite and austenite used in this work.  
The classical lever rule is used to calculate phase fractions in each two-phase region and the 
lever rule for ternary systems is used in the three phase region [57]. The 100% and 75% solid 
lines are compared with ZST and ZDT measurements by Schmidtmann et. al. [38].  They match 
very well.   

Figure 7 shows the phase fractions thus generated as a function of temperature for the 
0.04%C carbon steel, which is used in Section XIII. Note that the liquid fraction decreases 
parabolically as the steel cools from its liquidus. This agrees with a more sophisticated 
micro-segregation model [38].  

 
B. Thermal Properties 

The temperature dependent conductivity function for plain carbon steel is fitted from 
measured data compiled by K. Harste [58] and is given in Eq. [43].  Figure 8 shows the 
conductivity for several typical plain carbon steels.  The conductivity increases linearly 
through the mushy zone to the liquid by a factor of 6.5 to partly account for the effect of 
convection due to flow in the liquid steel pool [55]. 
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 [43] 

The enthalpy curve used to relate heat content and temperature in this work, ( )H T , is 
obtained by integrating the specific heat curve fitted from measured data complied by K. 
Harste [58] as given in Eq. [44].  Figure 9 shows the enthalpy for typical plain carbon steels. 
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For the multi-phase region, both conductivity and enthalpy are calculated by weighted 
averaging their different phase fractions, f.  The subscripts (α, δ, γ, and l) in Eqs. [43] and [44] 
represent α-ferrite, δ-ferrite, austenite and liquid, respectively. Density is assumed constant 
( 37400 Kg m ) in order to maintain constant mass. 

 
C. Thermal Linear Expansion 

The thermal linear expansion function is obtained from solid phase density measurements 
compiled by K. Harste [58] and Jablonka [59] and liquid density measurements by Jimbo and 
Cramb [60]. 
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A simple mixture rule is applied to obtain the overall density from the values of different 
phases.  Figure 10 shows the thermal linear expansion curves for the typical plain carbon steels. 

 
D. Inelastic Constitutive Properties 

The unified constitutive model developed here uses the instantaneous equivalent inelastic 
strain rate, inε& , as the scalar state function, which depends on the current equivalent stress, σ , 
temperature, T , the steel carbon content, and the current equivalent inelastic strain, inε , which 
accumulates below the solidus temperature [61-63].  The model was developed to match tensile 
test measurements of Wray [62] and creep test data of Suzuki [64].  Model III by Kozlowski given 
in Eq. [46] is adopted to simulate the mechanical behavior of austenite. 
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where the direction of σ , c, is given in Eq. [13], except using the principal stresses 
instead of principle strain components. 
A power law model was developed to model the behavior of δ-ferrite [11], given as follows: 
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Figure 11 compares the stresses measured by Wray [62] to those predicted by the constitutive 
models at 5% strain, integrated under different constant strain rates.  The constitutive models 
give acceptable performance.  This figure also shows that δ-ferrite, which forms at higher 
temperatures found near the solidification front, is much weaker than austenite.  This greatly 
affects the mechanical behavior of the solidifying steel shell.  

A simple mixture rule is not appropriate in two-phase regions that contain interconnecting 
regions of a much weaker phase.  Thus, the constitutive model given in Eq. [47] is applied in 
the solid whenever the volume fraction of ferrite (δ-ferrite above 1400oC, α-ferrite below 
900oC) is more than 10%. Otherwise, Eq. [46] is adopted. 
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To make the constitutive model properly handle kinematic hardening during reverse 
loading, the equivalent stress/strain used in Eqs. [46] and [47] are given the same sign as the 
principle stress/strain having the maximum magnitude.  The inelastic strain rate, as a 
consequence, also bears a sign. 

Two uniaxial tensile experiments [42, 63] and a creep experiment [64] on plain carbon steel at 
elevated temperatures were simulated by CON2D to test the performance of its constitutive 
models.  Figures 12(a) and 12(b) show CON2D predictions of tensile test behavior of austenite 
and delta-ferrite at constant strain rate around 10-4 s-1 which is typically encountered in the 
shell during continuous casting [63].  The results also compare reasonably with experiments at 
small strain (< 5%), although they over-predict the stress when the strain exceeds 5%. Because 
the strain generally stays within 5% for the entire continuous casting process, the constitutive 
models are quite reasonable for this purpose.  Figure 13(a) shows the CON2D predictions of 
creep test behavior at constant load.  The inelastic strain predictions match the measurements 
reasonably well, especially at times shorter than 50s, of most concern to continuous casting in 
the mold region.  Beyond this time, CON2D underpredicts creep, which is consistent with the 
overprediction of stress, observed in the tensile test cases.  Monotonic loading is unlikely 
beyond this length of time, anyway.  Figure 13(b) compares CON2D predictions and creep test 
measurements [64] under a sinusoidal alternating load with full reversal (R-ratio = 1.167).  
Although more measurements and computations of complex loading conditions would be 
helpful, these comparisons show that the constitutive models in CON2D are reasonable, even 
for conditions that include reverse loading.    

 
E. Elastic Properties 

The temperature-dependent elastic modulus curve used in this model is a stepwise linear fit 
of measurements by Mizukami et. al. [65] given in Figure 14. Unlike in some other models, the 
elastic modulus of the liquid here was given the physically realistic value of 10GPa. Poisson 
ratio is 0.3 constant.  Measurements of higher Poisson ratios at high temperature are attributed 
to creep occurring during the experiment.  Incorrectly incorporating part of the volume 
conserved plastic behavior, where 0.5υ = , into the elastic υ  will cause numerical difficulty 
for the solver. 

 
XI. NUMERICAL PERFORMANCE 

A 2-D transient elastic-visco-plastic thermal stress simulation with solidification, internal 
pressure, and contact is a challenging problem even for a super-computer.  The efficient 
algorithms in CON2D allow the complete solution of practical problems in reasonable times 
with reasonable accuracy. Coupling between the thermal and stress models can cause 
instability, however, unless parameters, such as time step size, tolerances of gap size and 
penetration, are carefully chosen.  Current experience indicates the initial time step for a fully 
coupled simulation with mold wall constraint should be 0.0001 sec., which is 10 times smaller 
than the smallest time step size adopted for uncoupled thermal stress simulation by Zhu [3].  The 
time step size can be increased 20-fold up to 0.005 sec. as the simulation progresses.  
Increasing time step size further does not speed up the simulation due to the need for more 
in-step iterations.  It takes about 72 hours to perform a complete fully-coupled 19-s mold 
simulation of a 120mm×120mm billet with 7381 nodes on a Pentium IV 1.7 GHz workstation 
running Windows 2000 Professional OS using less than 500 MB of RAM.  The corresponding 
simulation without coupling allows larger time steps (0.001 – 0.5s) and takes only about 5 
hours.  Below-mold simulations allow even larger steps and take only about 1 hour [66]. 

Reasonable tolerances should be specified to achieve satisfactory gap size convergence 
while avoiding excessive mold wall penetration.  The minimum gap, dgapmin, is chosen here to 
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be 0.012 mm, which is less than the effective thickness of the oscillation marks and surface 
roughness.  Gaps smaller than this are considered to be converged.  Thus, the effective 
oscillation mark depth dominates the heat resistance across the gap, and must be determined 
either by measurement or calibration.  The tolerance for the mold wall penetration, dpen, is 
chosen to be 0.001 mm, which is on the order of the incremental displacement between two 
consecutive time steps.  Too large a tolerance tends to make the simulation inaccurate, while 
too small a tolerance makes the program overreact to small penetrations and slows down the 
simulation.  The best value of dpen depends on the problem.  Generally, a smaller value is 
needed when the simulation region of interest is closer to the meniscus. 

 
XII.  MODEL VALIDATION 

An analytical solution of thermal stress model in an unconstrained solidifying plate, derived 
by Weiner and Boley [67] is used here as an ideal validation problem for solidification stress 
models. Constants for this validation problem were chosen here to approximate the conditions 
of interest in this work and are listed in Table II. 

The material in this problem has elastic-perfect plastic behavior. The yield stress drops 
linearly with temperature from 20 MPa at 1000oC to 0 MPa at the solidus temperature 
1494.35oC. For the current elastic-viscoplastic model, this constitutive relation was 
transformed into a computationally more challenging form, the highly nonlinear creep function 
of Eq. [14] with A= 81.5 10× and σyield =0.01 MPa in the liquid.  A very narrow mushy region, 
0.1oC, is used to approximate the single melting temperature assumed by Boley and Weiner.  In 
addition to the generalized plane strain condition in the axial z-direction, a similar condition 
was imposed in the y-direction (parallel to the surface) by coupling the displacements of all 
nodes along the top surface of the slice domain as shown in Figure 1(c).  The analytical 
solutions were computed with MATLAB [68]. 

Figures 15 and 16 show the temperature and the stress distributions across the solidifying 
shell at different solidification times using an optimized mesh and time step, similar to that 
adopted for the 2-D billet casting simulation. The mesh was graduated, increasing in size from 
0.3mm at the left end to 2.0mm at right end and time step size increased from 0.001sec. at the 
beginning to 0.1sec. at the end. 

Figures 17 and 18 show the relative average errors, given in Eq. [48] for the temperature and 
stress predictions, respectively.  
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Accuracy of the CON2D predictions increases if the mesh and time step are refined 
together.  A fine uniform mesh of 0.1 mm, with small uniform time step of 0.001 sec., produces 
relative average errors within 1% for temperature and within 2% for stress. However, the 
computational cost is also high. Note that the inaccuracy is severe at early times of the 
simulation, especially for the stress predictions.  This is because the solidified layer initially 
spans only a few elements.  As the solid portion of the plate grows thicker, the mesh size and 
time step requirements become less critical.  Thus, a non-uniform mesh with increasing time 
step size is better to satisfy both accuracy and efficiency.  The optimal choice, used in Figures 
15 and 16, gives a decent prediction with the relative average errors within 2% for temperature 
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and 3% for stress. A similar mesh was adopted for the actual billet casting simulation. This 
demonstrates that the model is numerically consistent and has an acceptable mesh. 

 
XIII. APPLICATION TO BILLET CASTING 

CON2D was next applied to simulate a plant trial conducted at POSCO, Pohang works, 
South Korea [18], for a 120-mm square section billet of 0.04%C steel cast at 2.2 m/min, where 
measurements were available.  The mold had a single linear taper of 0.785%/m.  Details of the 
material and operation conditions are given in Tables III and IV, respectively. Two simulations 
were performed to predict the temperature, stress and deformation evolutions of the billet shell 
using the 2-D L-shaped domain (Figure 1(b)) and a slice domain through the centerline of the 
billet face (Figure 1(c)) similar to the Boley & Weiner analytical problem.  The interfacial heat 
transfer constants for both simulations are given in Table I and were found with the help of a 
dedicated heat transfer code, CON1D [51].   

The superheat flux profile was obtained from coupled computations of turbulent flow and 
heat transfer in a round billet caster by Khodadadi et al. [54] for the case of Grashof number 
( ( )3 2( ) ( )pour mGr gW TLE T TLE T ν= − ) is 81 10× .  This value is the closest case to the current 

problem conditions where the Grashof number is 72 10× and confirms that natural convection 
is unimportant in this process.  The heat flux was calculated from the Nusselt number, Nu, and 
mean liquid temperature, Tm, results given as a function of distance below meniscus [54], using 
their values of liquid steel conductivity, 29.8 /k W mK= , mold section size, W=200mm and 33 
oC superheat, except for re-adjusting the superheat temperature difference as follows: 
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where Tpour and Tliq are the pouring and liquidus temperatures, respectively. The resulting 
superheat flux profile is shown in Figure 19.  Note that the total heat integrated from Figure 19 
over the mold surface, 48.6kW, matches the superheat for the current problem, 
( ) 46pour liq p cT T c v kWρ− = . 

The heat flux and mold wall temperatures predicted by CON2D along the billet face center 
are shown in Figures 20 and 21 respectively.  These results slightly underpredict the 
measurements of thermocouples embedded in the mold wall, which should lie almost exactly 
between the hot and cold face temperatures [69].  The total heat extracted by the mold, 128.5 kW, 
is 17% lower than the plant measurements based on a heat balance of the mold cooling water 
(8K temperature rise at 9.2m/s slot velocity) of 154kW [18].  This is consistent with 
underprediction of the mold temperatures. 

The predicted shell growth for this CON2D simulation is given in Figure 22, as indicated by 
the evolution of the solidus and liquidus isotherms.  This is compared with measurements of 
the solid-liquid interface location, obtained by suddenly adding FeS tracer into the liquid pool 
during steady-state casting [18].  Longitudinal and transverse sections through the billet were cut 
from the final product.  The transverse section was 285 mm from the meniscus when the FeS 
tracer was added.  Because FeS tracer cannot penetrate the solid steel shell, sulfur prints of 
sections cut through the fully-solidified billet reveal the location of the solidification front and 
shell thickness profile at a typical instant during the process [18].  The CON2D predictions 
match along the centerline beyond the first 80mm below the meniscus, where the shell remains 
in contact the mold, suggesting that the heat transfer parameters are reasonably accurate. 

The shell surface position profile down the centerline is shown in Figure 23, together with 
the mold wall position, which includes both the taper, and the mold distortion profile 
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calculated from the CON1D temperature results using Eq. [39] [51]. The shell surface generally 
follows the mold wall with no obvious penetration, validating the contact algorithm.  Note, 
however, that a slight gap opens up within the first 25mm.  Although this effect is believed to 
be physically reasonable owing to rapid initial shrinkage of the steel, it is exaggerated here, 
owing to numerical difficulties during the initial stages of solidification.  This causes an 
overprediction of the drop in initial heat flux and temperature observed in Figure 20.  This drop 
is followed by increased heat flux (and corresponding mold wall temperature) after full contact 
is re-established, which has also been observed in other measurements [70].    

The simulation features a detailed prediction of temperature, shrinkage, and stress in the 
region of the rounded billet corner.  The evolution of the increases in gap size and surface 
temperature are given in Figures 24 and 25 near (20mm) to the centerline of the billet face and 
at various locations, 0, 5, 10, and 15mm, from the billet corner.  The corresponding large drops 
in heat flux are included in Figure 20.  The solidifying shell quickly becomes strong enough to 
pull the billet corner away from the mold wall and form a gap around the corner region.  The 
gap greatly decreases local heat flow in the corner, causing the mold wall temperature to drop.   

The drop in mold temperature near the corner over the initial 80mm is more than expected in 
reality, because the simple mold model of CON2D in Eq. [33] neglects heat conduction around 
the corner and along the casting direction.  Thus, these predictions are not presented.  This 
latter effect, which is included in CON1D [51], also contributed to the convergence difficulties 
along the centerline discussed in Figure 23.  Fortunately, it has little other effect on heat flux or 
shell behavior.  

Figure 24 shows how a permanent gap forms after 40mm below the meniscus, which grows 
to over 0.3mm thick by half-way down the mold, growing little after that.  Corresponding gaps 
form adjacent to the corner at later times, reaching smaller maxima part-way down the mold. 
These gaps form because the simple linear taper of the mold walls was insufficient to match 
shrinkage of the shell.  The corner effect decreases with distance from the corner and 
disappears beyond 15mm from the corner.   

The corner gap and drop in heat flux causes a hot spot at the corner region, as shown in the 
surface temperature profiles of Figure 25.  CON2D predicts that the shell corner reheats 
slightly and reaches 150oC hotter than the billet face center, for the conditions of this trial.  The 
decreased heat flux also produces less solidification in the corner, as illustrated in Figure 26 at 
285mm below the meniscus.  The predicted shell thinning around the corner is consistent with 
the plant measurements from the sulfur print, as quantified in Figures 22 and 26.  The 
predictions here are also consistent with those of Park et. al. , who modeled how increasing 
billet mold corner radius leads to more severe hot and thin spots near the corner [18].  This tends 
to validate the CON2D model and the simple constant interfacial heat transfer parameters used 
to produce these results.  Improving the accuracy would likely require a more complex model 
of gap heat transfer that considered details of surface roughness, including differences between 
center and corner.   

Figure 27 shows the evolution of surface stress components near the centerline of the billet 
face.  Stress normal to the surface (x-direction) is effectively equal to zero, which indicates that 
the 0.785%/m mold taper never squeezes the billet.  The stress components perpendicular to 
the solidification direction (y-direction tangential to surface and z-casting direction) are 
generally very similar, which matches the behavior expected from the analytical test solution 
[67].  These stresses grow slowly in tension during the period of increasing heat extraction rate 
from 20 to 100mm below the meniscus. They reach a maximum of almost 3 MPa due to the 
increase in shell strength at lower temperature that accompanies the transformation from 
δ-ferrite to austenite. This is shown in the through-thickness profile of these same stress 
components in Figure 28(a), but calculated with the 1-D slice domain.  The surface tensile 
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stress peak does not penetrate very deep, owing to the very thin layer of material colder than 
10% delta-ferrite.  Thus, this peak might cause very shallow fine surface cracks, but nothing 
deeper.   

The surface stresses in Figure 27 suddenly turn compressive beyond 100mm due to the 
sudden change in heat extraction rate at this distance (see Figure 20).   Surface compression 
arises because the subsurface begins to cool and shrink faster than the surface.  This causes a 
corresponding increase in subsurface tension near the solidification front that might lead to 
subsurface cracks.  The surface stays in compression from -4 to -6 MPa for the remaining time 
in the mold.   

During the time beyond 100mm, the stress profile, Figure 28(b), is qualitatively similar to 
that of the analytical test problem, as expected.  Differences arise from the variation in steel 
strength between the δ-ferrite and austenite.  Stresses in the liquid, mushy zone and δ-ferrite 
are always very small.  Tensile stress increases rapidly during the phase transformation, which 
takes place at the low end of the δ+γ region of Figure 28.  When the δ-ferrite region is thin, this 
tensile stress is more likely to create strains significant to generate cracks.  These results 
illustrate the widely accepted knowledge that surface cracks initiate near the meniscus, while 
subsurface cracks form lower down. 

Figures 29(a) and (b) show the different components of strain (y-direction) through the shell 
thickness near the billet face center corresponding to the stresses in Figure 28.  Thermal strains 
dominate in the solid and generate the other strains due to the constraint of adjacent layers of 
steel.  Small elastic strains are generated by the mismatch of thermal strain, although the 
stresses they generate may still be significant. Inelastic strain is generated in regions of 
high-stress, starting in the δ+γ region. It is high at the surface at the top of the mold and later 
grows in the austenite. Note that inelastic strains are all tensile throughout the shell. The δ and 
mushy zones behave elastically with very low stresses.  This is fortunate as these phases are 
very weak and cannot accommodate much inelastic strain before cracking. Flow strain in the 
liquid occurs to accommodate the total strain, which is naturally flat, owing to the constraint by 
the solid.  

Figure 30 shows the “hoop” stress component (y direction parallel to billet surface and 
perpendicular to casting direction) at an off-corner location (10mm above the billet corner) 
through the shell thickness at 100mm, 500mm, and 700mm (mold exit) below meniscus.  
Stresses all behave similarly to the corresponding locations along the billet centerline, except 
that the tension and compression are lower. This is expected due to the slower cooling rates, 
shallower temperature gradients, and higher temperatures near the corner.   

Figures 31 and 32 show contours of the stress and inelastic strain components perpendicular 
to the solidification direction superimposed on the distorted billet at mold exit with isotherms.  
The insufficient 0.785%/m taper of this mold is unable to support the billet which allows a 
slight bulge (0.25 mm at mold exit).  Regions of high tensile stress and inelastic strain are 
indicated at the off-corner subsurface (10 ~ 20 mm from the corner and 2 ~ 6 mm beneath the 
surface). 

 
XIV.  CONCLUSIONS 

A transient, two-dimensional, finite element model has been developed to quantify the 
temperature, stress and strain distributions in the solidifying shell in the continuous casting of 
steel.  This is a Lagrangian approach in generalized plane strain that reasonably predicts the 
3-D stress and strain state by solving energy and force balance equations within a 2-D 
transverse slice domain.  Superheat dissipation and ferrostatic pressure are both taken account 
through internal boundary conditions. Unified elastic-viscoplastic constitutive models for both 
austenite and δ-ferrite phases of the steel match tensile and creep test data.  Liquid is given 
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physically reasonable properties including a high viscoplastic shear rate and small yield stress.  
A robust and efficient time integration technique, alternating local-global method, is adopted to 
integrate the highly non-linear constitutive equations.  An efficient contact algorithm allows 
the model to properly treat shell surface interaction with the mold wall.   

The model is validated by extensive comparisons with an analytical solution of thermal 
stress in an infinite solidifying plate, which justify the choice of mesh and time step size.  The 
model is applied to simulate a 120-mm square billet continuously cast at 2.2m/min and the 
results compare favorably to in-plant measurements of thermocouples embedded in the mold 
walls, heat balance on the cooling water, and thickness of the solidified shell.   

CON2D is a useful tool to gain quantitative understanding of issues pertaining to thermal 
mechanical behavior of the solidifying shell during the continuous casting of steel slabs and 
billets.  It is being applied to investigate taper in billets [71] and slabs [72], minimum shell 
thickness to avoid breakouts [30], maximum casting speed to avoid longitudinal cracks due to 
off-corner bulging below the mold [66], and other phenomena.   
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APPENDIX A. FINITE ELEMENT IMPLEMENTATION OF HEAT TRANSFER 
MODEL 

A. Linear Temperature Triangles 
The small triangles in Figure 33 show the constant temperature-gradient triangle element 

used for the heat-flow model. Temperature within an element is interpolated by the same shape 
functions used to interpolate the coordinates. 
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The [ ]B  matrix in global coordinate system can be obtained as: 
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where A is the area of the triangle element. 
B. Conductance Matrix and Capacitance Matrix 

The element conductance and capacitance matrices needed to assemble Eq. [15] are given in 
Eqs. [52] and [53] [73]. 
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ke is the average conductivity of the three nodal values within each element and cpe is the 
effective specific heat within the element, given by Eq. [16]. 

 
APPENDIX B. FINITE ELEMENT IMPLEMENTATION OF STRESS MODEL 

A. Linear Strain Elements 
Figure 33 shows the 6-node linear-strain isoparametric triangle finite element used in this 

work.  Global coordinates and displacements within each element are interpolated from its 
nodal values by: 
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where the shape functions in natural local coordinates are 
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B. Generalized Plane Strain Formulation 
The three unknowns, a, b, and c, which describe the out-of-plane strain in Eq. [5], are 

assembled into the finite element equations to be solved concurrently with in the in-plane 
displacements. The displacement vector is therefore: 
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The strain-displacement relationship is: 
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The 'B    for matrix generalized plane strain is given as: 
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The elastic stress-strain relation is: 
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The deviatoric stress vector is: 
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The von-Mises or “equivalent” stress is: 
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C. Global Stiffness Matrix and Force Vectors 

The global stiffness matrix [ ]K , and force vectors, { }th
Fε∆ , { }pl

Fε∆ , { }fpF , and { }elF  in 

Eq. [21] are assembled from the local stiffness matrix and force vectors of each element at the 
current time step t t+ ∆ . 
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Integrals are evaluated numerically using standard 2nd order Gauss quadrature [74] according 
to the integration sampling points given in Figure 33 with a constant weighting factor of 1/3. 

 
NOMENCLATURE 

 
cp Specific heat of steel (kJ/kgK) 
c Sign of the equivalent stress/strain 
E  Young’s modulus (MPa) 
Fp Ferrostatic pressure 
g Gravity acceleration  
H Enthalpy of steel (kJ/kg) 
k Conductivity of steel (W/mK) 
Nu Nusselt Number 
q Heat flux 
T Temperature (oC) 
TLE Thermal linear expansion 
∆TB brittle temperature range 
u Displacement (m) 
vc Casting Speed 
W Mold Section Size 

 
b
%

 Body force vector 
[ ]C  Capacitance matrix  

[ ]D , D
%%

 Elasticity matrix/tensor 

{ }fpF
 

Force vector due to ferrostatic pressure 
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{ }qF  Heat flow load vector 

[ ]K  Conductance matrix for heat transfer model, Stiffness matrix for stress model 

n̂  Unit vector normal to the mold wall surface 
{ }Q  Heat generation vector 

ε
%%

,{ }ε  Strain tensor/vector 

ε̂∆
%%

 Estimated of total strain increment  

σ
%% ,{ }σ  Stress tensor/vector 

'σ
%% ,{ } 'σ  Deviatoric stress tensor/vector 

*σ
%%

,{ }*σ  Stress tensor/vector without inelastic increament components 

 
α Thermal expansion coefficient 
ε Strain 
ε  Equivalent strain 
µ Lame constant 
ν Poisson’s ratio 
ρ Density of steel (kg/m3) 
σ  Equivalent stress 

yieldσ  Yield stress (MPa) 
 
Subscripts 

flow Flow 
in Inelastic 
th Thermal 
x Component along x direction 
y Component along y direction 
γ Austenite 
δ δ-ferrite 
ε Elastic 
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Solidified
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Ferrostatic
Pressure Gap

Super Heated
Liquid Steel

 
(a) Schematic of billet casting 

 
(b) L-shaped mesh of 3-node heat transfer elements (shown) connected into 6-node stress 

elements 
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(c) Schematic of slice domain at the billet centerline 

Fig. 1: Modeling domain of casting billet 
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Fig. 2: Schematic of thermal resistor model of the interfacial layer between mold and billet 
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Fig. 3: Flow chart of CON2D 
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Fig. 4: Three types of penetration modes in contact algorithm 
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Fig. 5: Schematic of how ferrostatic pressure is applied at the internal boundary 
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Fig. 6: Non-equilibrium Fe-C phase diagram[38] used in CON2D 
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Fig. 7: Fraction as a function of temperature for the 0.04%C steel 
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Fig. 8: Conductivity of plain carbon steels 
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Fig. 9: Enthalpy of plain carbon steels 
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Fig. 10: Thermal linear expansion (TLE) of plain carbon steels 
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Fig. 11: Comparison of CON2D predicted and measured stress [62] at 5% plastic strain 
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(a) Koslowski III law for austenite [61] against tensile test measurements [42] 
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(b) Power law for δ-ferrite [3] against tensile test measurements [62] 

Fig. 12: CON2D predictions compared with tensile-test measurements [42, 62] 
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(a) Constant load 
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(b) Alternating load 

Fig. 13: Predicted behavior of austenite compared with creep and cyclic loading test 
measurements at 1300 oC [64] 
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Fig. 14: Elastic modulus for plain carbon steels used in CON2D [65] 
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Fig. 15: Temperatures through an infinite solidifying plate at different solidification times 

compared with Boley & Weiner analytical solution 
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Fig. 16: Stresses through an infinite solidifying plate at different solidification times compared 

with Boley & Weiner analytical solution 
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(a) Time step size effect 
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(b) Mesh size effect 

Fig. 17: Temperature error between CON2D and analytical solution [67] from convergence 
studies 
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(a) Time step size effect 
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(b) Mesh size effect 

Fig. 18: Stress error between CON2D and analytical solution [67] from convergence studies 
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Fig. 19: Super heat flux used in CON2D for billet casting simulation 
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Fig. 20: Predicted instantaneous heat flux profiles in billet casting mold 
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Fig. 21: Predicted mold wall temperature profiles compared with plant measurements 
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Fig. 22: Predicted shell thickness profiles for billet casting compared with plant measurements 
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Fig. 23: Mold distortion, mold wall position and shell surface profiles for the billet casting 

simulation 
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Fig. 24: Gap evolution predicted by CON2D for the billet casting simulation 
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Fig. 25: Shell surface temperatures predicted for billet casting simulation  
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Fig. 26: Temperature contours at 285mm below meniscus compared with corresponding sulfur 

print from plant trial 

Distance Below Meniscus (mm)

St
re

ss
es

(M
Pa

)

0 100 200 300 400 500 600 700-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

Stress along X-Dir
Stress along Y-Dir
Stress along Casting Dir

Casting Dir
y

x

* 20mm from billet center line

 
Fig. 27: Surface stress histories predicted near the billet face center (2-D L-mesh domain) 
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(a) 100 mm below meniscus 
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(b) Mold exit (700 mm below meniscus) 

Fig. 28: Stress and temperature predicted through the shell thickness far from billet corner 
(slice domain) 
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(b) Mold exit (700 mm below meniscus) 

Fig. 29: Strain components predicted through the shell thickness far away from billet corner 
(slice domain) 
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Fig. 30: Stress predicted through the shell thickness near billet corner (2-D L-mesh domain) 
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Fig. 31: Stress contours predicted at mold exit 
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Fig. 32: Inelastic strain contours predicted at mold exit  

s

t

(0,0)

(0,0.5)

(0,1)

(0.5,0) (1,0)

(0.5,0.5)

(2/3,1/6)
Weight=1/3

(1/6,1/6)
Weight=1/3

(1/6,2/3)
Weight=1/3

 
Fig. 33: 6-node quadratic displacement triangle element with Gauss points for stress model and 

corresponding four 3-node linear temperature triangle elements 
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Table I. Parameters of the interface model 
Cooling Water Heat Transfer Coefficient, 
hwater (W/m2K) 

22,000 ~  
25,000 

Cooling Water Temperature, Twater (oC) 30 ~ 42 
Mold Wall Thickness, dmold (mm) 6 
Mold Wall Conductivity, kmold (W/mK) 360 
Gap Conductivity, kgap (W/mK) 0.02 
Contact Resistance, rcontact (m2K/W) 6×10-4 
Mold Wall Emissitivity   0.5 
Steel Emissitivity 0.8 

 

Table II. Constants used in Boley and Weiner analytical solution 
Conductivity (W/mK) 33.0 
Specific Heat (kJ/kgK) 0.661 
Latent Heat (kJ/kg) 272.0 
Elastic Modulus in Solid (GPa) 40.0 
Elastic Modulus in Liquid (GPa) 14.0 
Thermal Linear Expansion Coefficient (1/K) 0.00002 
Density (kg/m3) 7500.0 
Poisson's Ratio 0.3 
Melting Temperature, Tmelt (oC) 1494.4 
Liquidus Temperature (oC) 1494.45 
Solidus Temperature (oC) 1494.35 
Cold Surface Temperature, Tcold (oC) 1000.0 
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Table III. Material details in billet plant trial 

Steel Composition (wt%) 0.04C 
Liquidus Temperature (oC) 1532.1 
70% Solid Temperature (oC) 1525.2 
90% Solid Temperature (oC) 1518.9 
Solidus Temperature (oC) 1510.9 
Austenite→α-Ferrite Starting Temperature (oC) 781.36 
Eutectoid Temperature (oC) 711.22 

 
Table IV. Simulation conditions in billet plant trial 

Billet Section Size (mm×mm) 120×120 
Working Mold Length (mm) 700 
Total Mold Length (mm) 800 
Casting speed (m/min) 2.2 
Mold corner radius, (mm) 4 
Taper (%m) 0.785 (on each face) 
Time to turn on ferrostatic pressure (sec.) 2.5 
Mesh Size (mm×mm) 0.1×0.1 - 1.4×1.0 
Number of Nodes (varies with section size) 7381 
Number of Elements (varies with section size) 7200 
Time Step Size (sec.) 0.0001 - 0.005 
Pouring Temperature (oC) 1555.0 
Coherency Temperature (oC) 1510.9 
Gap tolerance, dmin 0.001 (0.1%) 
Minimum gap, dgapmin (mm) 0.012 
Penetration tolerance, dpen (mm) 0.001 

 
 
 


