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Abstract  

 

A simple analytical model of microsegregation for the solidification of multicomponent steel 

alloys is presented. This model is based on the Clyne-Kurz model and is extended to take into 

account the effects of multiple components, columnar dendrite microstructure, coarsening and 

the δ/γ transformation. A new empirical equation to predict secondary dendrite arm spacing as a 

function of cooling rate and carbon content is presented based on experimental data measured by 

several different researchers. The simple microsegregation model is applied to predict phase 

fractions during solidification, microsegregation of solute elements, and the solidus temperature. 

The predictions agree well with a range of measured data and the results of a complete finite-

difference model. The solidus temperature decreases with either increasing cooling rate or 

increasing secondary dendrite arm spacing. However, the secondary dendrite arm spacing during 

solidification decreases with increasing cooling rate. These two opposite effects partly cancel so 

the solidus temperature does not change much during solidification of a real casting. 

 

KEY WORDS: microsegregation; solidification; multicomponent; solute element; Clyne-Kurz 

model; columnar dendrite; coarsening; δ/γ peritectic transformation; secondary dendrite arm 

spacing; FDM model; steel; zero strength temperature; zero ductility temperature; cooling rate 
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I. INTRODUCTION 

 

Solidification phenomena play a major role in such diverse operations such as casting, crystal 

growth and welding. Solidification proceeds at various rates, which are sometimes far from 

equilibrium. Thus, the microstructure obtained is generally not homogeneous and gives rise to 

variations in composition with position at both small and large scales, which is known as 

segregation.  

 

Solute segregation is important because it leads to non-equilibrium phases, cracks, and other 

problems, which lower the mechanical properties of the final product. Over the last three 

decades, attention has focused on segregation of aluminum and steel alloys, owing to their great 

commercial importance and susceptibility to this solidification problem. Segregation affects all 

processes, including foundry, ingot and continuous casting. 

 

Segregation is classified according to its scale as: macrosegregation and microsegregation. 

Macrosegregation occurs on the scale of the grains or the entire casting and can be observed 

with the naked eye. It arises from large-scale fluid flow, caused by forced, natural and solutal 

convection. It requires the transport of solute-rich or -poor liquid and solid phases during 

solidification over distances much larger than the dendrite arm spacing. One unavoidable cause 

is the interdendritic flow of liquid due to solidification shrinkage and changes in the liquid 

density. These density changes can be caused by temperature changes or by changes in the liquid 

composition[1-3]. It is also affected by nozzles, which direct the liquid, electromagnetic forces, 

which enhance mixing[4-6], and by thermal or mechanical bulging or deformation of the casting 

during solidification[7]. Microsegregation refers to composition variation within the columnar 
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or equiaxed dendritic solidification structure, which has a length scale on the order of only a few 

micrometers. Clearly, macrosegregation prediction is very complex. Among many other things, 

it depends on an accurate prediction of microsegregation.  

 

Microsegregation is caused by the redistribution of solute during solidification, as solute is 

generally rejected into the liquid[8]. Its fundamental cause is the difference between the 

thermodynamic equilibrium solubility of alloy elements in the different phases, which coexist in 

the mushy region during solidification. This is combined with the inability of solid-state 

diffusion to fully return the composition to its equilibrium constant level after solidification is 

complete, owing to the short times and small diffusion coefficients involved. Quantitative 

prediction of these phenomena is complicated by several difficulties:  

1) quantifying the equilibrium solubility of each phase as a function of temperature. This is 

traditionally done using partition coefficients, which are reasonable for low concentrations, but 

requires the full multicomponent phase diagram for complex systems or higher alloy 

contents[9].  

2) solving for diffusion transport within the solid phases, which requires a) knowledge of the 

diffusion coefficients for each element, b) the length scale, which depends on the solidifying 

microstructure and varies from the secondary to the primary dendrite arm spacing to the grain 

size, and c) the cooling conditions, which depend on macroscopic heat conduction in the casting. 

3) linking of the microsegregation phenomena with the fluid flow and associated 

macrosegregation. This is complicated because flow occurs on at least three size scales, 

including flow within the interdendritic spaces, flow between grains, and flow in the bulk 

liquid[10].  
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4) accounting for phase transformations such as the peritectic transformation in steel, eutectic 

formation in aluminum alloys and precipitate formation.  

 

The purpose of the present work is to develop, validate, and apply a fast and simple 

microsegregation model for the solidification of multicomponent steel alloys, which can be 

incorporated into other macroscopic models such as thermal-stress analysis. The solubility levels 

are based on liquidus temperatures and partition coefficients taken from available measurements 

for multicomponent steel alloys as are the diffusion coefficients. To obtain the microstructural 

length scales, an empirical equation is developed to quantify the secondary dendrite arm spacing 

as a function of carbon content and cooling rate, based on experimental measurements of the 

final microstructures. This is because microstructure prediction is a very difficult task which 

requires computationally intensive modeling methods such as phase field[11-16] and cellular  

automata[9,17-20]. The cooling history needed by the model is planned to be calculated by a 

separate model, so in the present work, the cooling rate is simply input to match experiments or 

treated as a parameter. Linking of the model with flow is ignored. This simple model of 

microsegregation also takes into account the effects of coarsening and the δ/γ peritectic 

transformation. 

 

To validate this simple microsegregation model, its predictions are compared with both relevant 

experimental measurements by previous researchers[17,21-30] and more accurate finite 

difference model calculations. Finally, the effects of cooling rate, secondary dendrite arm 

spacing and steel composition on microsegregation are investigated in a parametric study. 
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II. PREVIOUS WORK 

 

Many microsegregation models[8,10,17,18,31-38] with different assumptions and 

simplifications have been developed to predict solute redistribution and related phenomena. 

Numerous studies[8,31-34] on microsegregation models have been carried out for only binary 

alloys. Some studies[9,10,17-20,35-38] modeled microsegregation during solidification of steels 

taking into account binary[10,36], five[17-20] or more[9,37,38] solute elements and the 

peritectic reaction.  

 

The heart of most simple microsegregation models is the assumed relationship between alloy 

concentration and solid fraction. This relationship can be evaluated to generate the one-

dimensional composition profile between adjacent dendrite arms. These different relationships 

are now discussed, in order of increasing complexity. 

 

The Lever rule model is an equilibrium solidification model, which assumes complete diffusion 

to equilibrium of all alloying elements in both the liquid and the solid phases as follows: 

 

1)1(
,

, +−
=

iS

io
iL kf

C
C                                                        (1) 

 

where CL,i is the liquid concentration of a given solute element at the solid-liquid interface, Co,i 

is the initial liquid concentration, ki is the equilibrium partition coefficient for that element and fS 

is the solid fraction. The Lever rule model is usually inaccurate later during solidification, 
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because diffusion in the solid phases is too slow, especially for larger solute atoms such as 

manganese. 

 

The opposite limiting case to the Lever rule model is the Scheil equation[31] or the “non-

equilibrium Lever rule”. This model assumes no diffusion in the solid phase, complete diffusion 

in the liquid phase and local equilibrium at the solid-liquid interface as follows. 

 

        1
,, )1( −−= k

SioiL fCC                                                       (2) 

 

However, it is apparent that the Scheil equation does not adequately estimate the final solute 

concentration, because CL becomes infinite at fS = 1. This model is only useful for very rapid 

solidification processes, such as laser welding where the cooling rates exceed 102 oC/sec[21]. 

 

In order to predict microsegregation during steel solidification, finite non-zero diffusion must be 

considered at least in the solid phase. Many simple microsegregation models[32-34] have been 

proposed, which assume fixed dendrite arm spacing, constant physical properties in the solid 

phase, thermodynamic equilibrium at the solid-liquid interface, and straight liquidus or/and 

solidus lines in the equilibrium phase diagram[39-43]. Brody and Flemings[32] have proposed a 

general form of this model which assumes complete diffusion in the liquid phase and incomplete 

back-diffusion in the solid phase as follows 

 

        [ ] )1/()1(
,, )1(1 ii kk

SiioiL fkCC β−−β−−=                                         (3) 
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This general form introduces β as a back-diffusion parameter, which has been quantified by 

many researchers[32-34] in different ways. In the original Brody-Flemings model for a plate 

dendrite[32], 

 

β = 2α                                                                  (4) 

 

where α is a Fourier number. 

 

α =
DS t f

X2                                                               (5) 

 

where DS is the solute diffusion coefficient in the solid phase, tf is the local solidification time, 

and X is the length scale of the microsegregation domain, usually taken to equal half of the 

secondary dendrite arm spacing, λSDAS, 

 

X =
λSDAS

2
                                                             (6) 

 

Eqs. (3) to (6) are solved assuming the known tf history to predict CL and related microstructure 

parameters[32]. The Brody-Flemings model simplifies to the Scheil equation in Eq. (2) when DS 

approaches zero (β = 0). On the other hand, when diffusion in the solid phase is infinitely fast, 

this model should logically simplify to the other extreme: the Lever rule, Eq. (1), which 

corresponds to β = 1. Clearly the model with Eq. (4) is not physically reasonable when α is large 

and β exceeds 1, because it does not even conserve mass. 
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To satisfy this requirement, Ohnaka[33] presented a simple modification of β to replace Eq. (4). 

It is based on comparison with approximate solutions of the diffusion equation for the plate 

dendrite, assuming a quadratic solute profile in the solid. 

 

β =
2α

1 + 2α
                                                                (7) 

 

A further modification was proposed[33] to account for coarsening and irregular shaped 

microstructures, such as columnar dendrites, by doubling α as follows. 

 

β =
4α

1 + 4α
                                                               (8) 

 

Ohnaka has compared concentration predictions using Eqs. (3) and (8) with other approximate 

solutions, and showed that his model agreed better with experimental data of Matsumiya et 

al.[17] than did predictions with Eq. (4). However, Voller et al.[8] pointed out that the 

performance of this model under constant cooling conditions is significantly better than its 

performance under parabolic cooling conditions. 

 

A different modification to ensure physical reasonability in the Brody-Flemings model (0 < β < 

1) was proposed by Clyne and Kurz[34] by replacing Eq. (4) as follows. 

 

β = 2α 1 − exp −
1
α
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� 
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� 
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                                            (9) 
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However, Ohnaka[33] and Matsumiya et al.[17] criticized this model for its lack of physical 

basis for intermediate values of β. 

 

Although all of the above equations for microsegregation are semi-empirical, they are simple 

analytical models that can be very useful if applied with caution. Among them, the Clyne-Kurz 

model is the most popular[33]. Kobayashi[35] obtained an exact analytical solution for 

microsegregation, assuming complete diffusion in the liquid phase, incomplete back-diffusion in 

the solid phase, constant partition coefficient, constant diffusion coefficient and a parabolic 

solidification rate. Its predictive performance is better than the above analytical models[35], 

particularly if the partition coefficient, k, and Fourier number, α, are small. But, this analytical 

solution has the disadvantage that all physical properties must be assumed to be constant, and 

that the solidification time must be known accurately. 

 

Matsumiya et al.[17] solved for interdendritic microsegregation using a 1-D finite-difference 

numerical method, taking into account the diffusion of solute in both the liquid and the solid 

phases, and hexagonal morphologies to approximate the dendrites. Battle et al.[36] developed a 

similar numerical model for plate dendrites and included the equation of Kurz et al.[44] for 

isothermal coarsening of the dendrite arms. The approach of Matsumiya et al. has been 

developed further to consider the δ/γ transformation which occurs during solidification of 

steels[18]. Wang et al.[10] developed a unified solute diffusion model for columnar and 

equiaxed dendritic alloy solidification, in which nucleation, growth kinetics and dendrite 

morphology are taken into account. Miettinen[9,37,38] developed models and data for 
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thermodynamic phase equilibria and diffusion for solidification of low-alloy steels and stainless 

steels. The predicted thermophysical properties from the melting temperature down to room 

temperature, including solidus temperatures, solute microsegregation and ferrite contents, agree 

well with experimental measurements[37]. These models have been implemented into the 

commercial packages Thermocalc[45], IDS[9] and MAGMA[46]. Unfortunately, these models 

take longer to compute the solute distribution profile or to couple with other models, so there is 

still a use for accurate simpler models. 

 

Voller et al.[8] proposed that the effect of coarsening can be accounted for in 1-D 

microsegregation models by adding an additional term to the Fourier number as follows. 

 

 α
+ = α + αC                                                            (10) 

 

This enhancement to the Fourier number accounts for the extra back-diffusion that would occur 

considering the smaller arm spacing that actually exists during solidification before coarsening. 

Voller et al.[8] showed that, across a wide range of cooling conditions, this model is able to 

match full coarsening model results by simply adopting a constant value of αC = 0.1. They 

explained that coarsening could be included in any microsegregation model by simply replacing 

the Fourier number α with the parameter α+. 

 

III. SIMPLE MICROSEGREGATION MODEL 
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The present simple microsegregation model developed in this work solves Eqs. (3), (5) and (6) 

based on evaluating the Clyne-Kurz model for each solute element modified as suggested by 

Ohnaka[33] to extend the model from plate to columnar dendrites and as suggested by Voller et 

al.[8] to account for coarsening as follows: 

 

  1.0and)(2where,
2

1exp1exp12 C =αα+α=α�
�

�
�
�

�

α
−−�

�

	


�

�
�
�

�
�
�

�

α
−−α=β +

++
+ C           (11) 

 

This simple semi-empirical analytical model assumes: 

1) Complete diffusion in the liquid phase. 

2) Local equilibrium at the solid-liquid interface. 

3) The equilibrium partition coefficient of solute elements applies at the solid-liquid 

interface and is constant throughout solidification. 

4) Nucleation undercooling effects are negligible. 

5) Fluid flow effects are negligible. 

 

A. Secondary Dendrite Arm Spacing Model 

 

In the present model, the length scale in Eq. (6) is the final secondary dendrite arm spacing, 

λSDAS, which varies with cooling conditions and alloy composition. Using λSDAS measured by 

several different researchers[47-51] at various cooling rates and steel carbon contents, an 

empirical relationship was obtained by a best fit as follows, 
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where CR is the cooling rate (oC/sec) and CC is the carbon content (wt%C). Figure 1 compares 

the predicted and measured λSDAS as a function of carbon content at various cooling rates. The 

λSDAS decreases steeply with increasing carbon content from zero to its minimum value at 

0.15wt%C, and then increases with increasing carbon content until about 0.6wt%C. From 

0.6wt%C to 1.0wt%C, λSDAS reduces again with increasing carbon content. This complicated 

variation of λSDAS with carbon content has been noted by other investigators[47,52,53]. El-Bealy 

et al.[52] suggested that this is because different solidification modes control the evolution of 

structure. Jacobi et al.[47] reported that λSDAS decreases with increasing carbon content during 

primary solidification of δ-ferrite. When solidification starts with γ-phase, the effect of carbon 

content is not clear, because only two such alloys (0.59 and 1.48wt%C) were studied. It appears 

that λSDAS decreases with increasing cooling rate for all steels, as shown in Fig. 1. At various 

cooling rates and carbon contents, the λSDAS values predicted with Eq. (12) are in reasonable 

agreement with the previous experimentally measured data[47-51].  

 

B. Multicomponent Alloy Effect 

 

In order to extend the model to multicomponent alloys, the effects of all individual components 

are summed. Mutual interaction effects between the alloying components on microsegregation 

are neglected. For each component, microsegregation is computed according to Eqs. (3), (5), (6) 
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and (11), using the individual values for the partition coefficient k and diffusion coefficient DS. 

The liquidus temperature, Tliq, depends on steel composition as follows[39], 

 

  
Tliq(

o C) = Tpure − mi
i
� ⋅Co,i                                                  (13) 

 

where Tpure is the melting point of pure iron (1536 oC) and mi is the slope of the liquidus line of 

each solute element in the pseudo-binary Fe phase diagram, given in Table I[39]. The 

temperature which corresponds to a given interface composition in the liquid, CL,i
, is found by 

summing the contributions of all alloying elements (indicated by subscript i) : 

 

 
T (oC) = Tpure − mi

i
� ⋅ CL,i                                                  (14) 

 

where ki is the equilibrium partition coefficient of each solute element given in Table I and CL,i
 

depends on fS according to Eqs. (3), (5), (6) and (11). The solidus temperature is given when fS = 

1.0. The equilibrium solidus temperature can be calculated using the Lever rule, Eqs. (1) and 

(14). 

 

C. Peritectic Phase Transformation Effect 

 

In the equilibrium Fe-C phase diagram, two solid phases occur naturally: the δ-ferrite phase and 

the γ-austenite phase. For carbon contents lower than 0.53wt%, when the melt cools down 

slightly below the liquidus temperature, solid nucleates and grows as δ-phase, until solidification 
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is complete (low carbon content) or until the peritectic temperature is reached (middle carbon 

content). At the peritectic temperature, solid γ-phase starts to form around the periphery of the δ-

phase dendrites, where the carbon content is higher. For carbon contents over 0.53wt%, the solid 

nucleates from the melt as γ-phase, which grows until the end of solidification. These behaviors 

have important consequences on the metal properties which control microsegregation, as shown 

in Table I. The equilibrium partition coefficients, diffusion coefficients, and liquidus line slopes 

of the solute elements depend greatly on the phase, according to measurements[40,41] and 

extrapolations[39,42,43] from the Fe-X (X = C, Si, Mn, P and S) binary system. The enrichment 

of solute elements in the interdendritic region during solidification causes a switch from δ-phase 

to γ-phase solidification once the carbon concentration exceeds 0.53wt%C. This change 

suddenly lowers the diffusion rates, which increases microsegregation and further lowers the 

solidus temperature. 

 

In order to incorporate the δ/γ transformation into the present model, the starting temperature, 

Tstart
δ / γ , and the ending temperature, Tend

δ / γ , of the δ/γ transformation are needed. The δ/γ 

transformation is assumed to start when the solid-liquid interface temperature in Eq. (14) equals 

the peritectic temperature, TAr4, found using the partition coefficients and diffusion coefficient of 

the δ-phase, according to 

 

  
Tstart

δ / γ(o C) = TAr 4 = Tpure
δ / γ − ni ⋅ki

δ / L ⋅ CL,i
δ

i
�                                        (15) 
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where Tpure
δ / γ  is the temperature of the δ/γ transformation of pure iron (1392 oC), ni is the slope of 

the TAr4 line of each solute element in its pseudo-binary Fe phase diagram, given in Table I [42], 

  ki
δ/ L  is the equilibrium partition coefficient of each solute element i of the δ-phase and δ

iLC ,  is 

the concentration of each solute element i in the δ-phase at the solid-liquid interface. 

 

The peritectic transformation is assumed to be controlled only by carbon concentration at the 

solid-liquid interface. The δ/γ transformation is assumed to be complete when the carbon 

concentration at the liquid-solid interface becomes equal to 0.53wt%C, based on Eqs. (3), (5), 

(6) and (11) with the diffusion, Di
δ , and partition coefficients,  ki

γ / L , of the γ-phase. The 

corresponding carbon concentration in the solid phase is the triplepoint of the peritectic reaction 

in the equilibrium Fe-C binary phase diagram[54]. 

 

The δ fraction of the solid phase is assumed to decrease parabollically from 1 at the start of the 

δ/γ transformation to zero at the end, according to  

 

δ fS =
fend

δ / γ − fS

fend
δ / γ − fstart

δ / γ

� 
� 
� � 

� 
� 

2

⋅ fS                                                    (16) 

 

When the temperature is above TAr4 (i.e. before the δ/γ transformation), the solid fraction is 

entirely δ-phase (fS = δfS). After the δ/γ transformation is complete, δfS is zero. The remainder of 

the solid fraction is naturally γ-phase. 
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γ fS = fS −δfS                                                             (17) 

 

Eqs. (16) and (17) are needed to evaluate the average liquid concentrations, CL,i
ave , needed in Eq. 

(14). 

 

CL,i
ave =

δ fS

fS

⋅ CL,i
δ +

γ fS

fS

⋅ CL,i
γ                                                 (18) 

 

This equation is needed to evaluate Eq. (14), when both δ- and γ-phases are present. 

 

D. Cooling History Effect 

 

The local solidification time, tf, needed in Eq. (5) is found from the cooling history. For the 

constant cooling rate assumed in the present work, this simplifies to: 

 

t f =
Tliq − Tsol

CR

                                                           (19) 

 

A first estimate of the local solidification time is chosen by evaluating the equilibrium liquidus 

and solidus temperatures from Eq. (13), and the Lever rule, Eqs. (1) and (14), respectively. From 

this initial guess, the value of Tsol is improved with a few iterative steps through Eqs. (12), (6), 

(19), (5), (11), (3), and (14) until consistent values are found for CL,i,  fS and T (e.g. fS = 1 at Tsol). 

If Eq. (15) indicates that two-phase conditions are present, then Eqs. (16)-(18) are used to 
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transform separate sets of iLC ,  values for the γ and δ-phases from the results of Eq. (13) to find 

the single set of CL,i
ave  values needed in Eq. (14). In practice, it is often desirable to find the entire 

solid fraction and temperature relationship. Thus, it is convenient to solve these equations 

simply by trial and error by systematically incrementing the solid fraction from 0 to 1 in steps of 

0.001. 

 

IV. FINITE DIFFERENCE MODEL 

 

In order to help validate the present simple model, the one-dimensional direct finite difference 

model based on that of Ueshima et al.[18] was developed and implemented to track the liquid 

fraction, δ-phase solid fraction, δfS, and γ-phase solid fraction, γfS, in the mushy zone as a 

function of temperature and to calculate solute redistribution. This model solves the following 

diffusion equations in a hexagonal domain chosen to approximate the morphology of columnar 

dendrites as shown in Figure 2. 

 

∂CS ,i

∂t
=

∂
∂x

DS,i(T )
∂CS ,i

∂x
� 
� 
� � 

� 
                                                 (20) 

 

Complete mixing of solute elements in the liquid phase and local equilibrium at the liquid/δ, 

liquid/γ and δ/γ interfaces are assumed. Diffusion of solute along the axial direction of the 

dendrite is assumed to be negligible. Thus, the model ignores macrosegregation due to fluid 

flow. As for the simple model, the equilibrium partition coefficients, diffusion coefficients and 

the slope of the liquidus line of the solute elements are given in Table I. The secondary dendrite 
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arm spacing used in this study is given in Eq. (12) as functions of cooling rate and carbon 

content. The calculation was made by dividing the triangular transverse cross section into 100 

thin nodal areas as shown in Figure 3. Initial and boundary conditions are: 

 

  

I. C. CS,i = kS / L ⋅Co,i at t = 0

B.C.
∂CS ,i

∂x
= 0 at x = 0, λ SDAS / 2

                                (21) 

 

When the liquidus temperature, Tliq, and the δ/γ transformation temperature, TAr4, become equal 

to the actual temperature of a given nodal area, the solidification and δ/γ transformation in that 

area are assumed to be complete and the interfaces move to the adjacent area. Tliq and TAr4 are 

calculated using Eqs. (13) and (15), respectively. Further information on this model is presented 

elsewhere[17-20]. 

 

V. MODEL VALIDATION 

 

To assess the validity of the present models, the microsegregation predictions were compared 

with previous microsegregation results in three different systems where measurements and/or 

numerical solutions were available. 

 

A. Eutectic Formation in Aluminum Alloys 

 

The first test is for an aluminum alloy with 4.9%Cu where final eutectic volume fraction was 

measured[21,55]. A eutectic fraction prediction is readily obtained from Eqs. (3), (5), (6) and 
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(11) of the simple model on setting CL = 33.2%Cu for this binary system. Figure 4 compares the 

predicted eutectic volume fraction of the simple model as a function of cooling rate (or 

solidification time) with experimental measurements of Sarreal et al.[21] and the numerical 

prediction by Voller et al.[8] for the conditions of k = 0.145[36], DS (cm2/sec) = 5 × 10-9[8], 

λSDAS (µm) = 46.6⋅CR
-0.29[21] and Tliq (oC) = 660 – 3.374⋅(%Cu) for this binary system. The 

measured eutectic volume fractions[21] are given in Table II, based on conversions from the 

measured non-equilibrium second phase[55]. The predicted eutectic fractions from the simple 

model are in reasonable agreement with these measurements. 

 

B. Segregation in Liquid Steel 

 

The second validation of the simple model investigated microsegregation of manganese and 

carbon for steel M1 in Table III. For this test, the manganese concentration predicted by the 

simple model was compared with results of the complete finite-difference model (Section IV) 

and other simple models including the Lever rule in Eq. (1), Scheil Eq. (2), and the different 

forms of Eq. (3) including the equations of Brody-Flemings Eq. (4), Ohnaka Eqs. (7) and (8), 

and Clyne-Kurz Eq. (9). The results are compared in Figure 5 for assumed conditions of X = 180 

µm, DS = 1.378 × 10-7 cm2/sec, tf   = 879.2 sec, k = 0.77 and Co = 1.52 based on the property data 

in Table I. The simple model is in good agreement with the present finite difference model. The 

Brody-Fleming equation and Ohnaka Eq. (8) also predict nearly the same microsegregation. 

However, the original of Clyne-Kurz equation and Ohnaka Eq. (7) predict slightly higher 

microsegregation, with almost identical values, as shown in Table IV.  
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Figure 6 compares the changes of the carbon concentration in the liquid phase at the solid-liquid 

interface. For the conditions of X = 180 µm, DS = 7.263 × 10-6 cm2/sec, tf  = 168.3 sec, k = 0.19 

and Co = 0.13, all equations except the Scheil and Brody-Fleming equations, predict almost the 

same microsegregation. As Clyne and Kurz[34] explained, when α is large, the Brody-Flemings 

equation predicts less enrichment in the liquid phase than does the Lever rule, so is physically 

unreasonable. The Scheil equation naturally over predicts the enrichment. The other models 

predict similar large β values, so their liquid concentration predictions are similar, as shown in 

Table IV. Even the Lever rule (β = 1) is quite reasonable, as carbon diffusion is almost complete 

for the large value of α in this problem (3.773). In summary, the liquid concentrations of the 

present simple model agree well for a wide range of α, as shown in Figs. 4, 5 and 6. 

 

For the next validation test, model predictions are compared with the experimental 

measurements by Matsumiya et al.[17] for steel M1, which was solidified unidirectionally and 

quenched with a columnar structure at two different cooling rates. The measured primary 

dendrite arm spacing was 360 µm at cooling rates of 0.045 and 0.25 oC/sec. The secondary 

dendrite arm spacing was 100 µm at 0.25 oC/sec. But, at 0.045 oC/sec, the dendrites in the 

microstructure did not exhibit clear patterns for secondary dendrite arm spacing. Although it is 

not exactly clear, the measurement appears to be some average of the solute concentration in the 

quenched region, including both interdendritic primary arm and interdendritic secondary arm 

material. Accordingly, calculations were performed with both microsegregation models for the 

primary arm spacing of 360 µm at 0.045 oC/sec, and for the secondary arm spacing of 100 µm at 

0.25 oC/sec. Calculations were also performed using the secondary dendrite arm spacing 

obtained from Eq. (12).  
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Figure 7 compares the calculated manganese and phosphorus concentrations in the liquid phase 

at the solid-liquid interface. All calculations fall between the experimental measurements for 

both cooling rates, as shown in Fig. 7. The results using spacings from Eq. (12), are almost 

identical for both cooling rates as for 0.045 oC/sec with the primary dendrite arm spacing of 360 

µm. This is because the parameter tf / X
2 is about the same, as shown in Table V. The relative 

accuracy of all of these similar predictions could not be resolved within the experimental 

uncertainly. 

 

C. Solidification Temperatures of Steel 

 

The final three validation tests focus on the non-equilibrium 75%-solid and solidus temperatures 

for three different steel systems at three different cooling rates. These two solid fractions are 

chosen because they are believed[20] to correlate with the sudden mechanical property changes 

observed during high temperature tensile tests with in-situ melting[22-26]. Specifically, these 

measurements have identified a zero strength temperature (ZST) and a zero ductility temperature 

(ZDT). Above ZST, solidifying steel has no strength and no ductility, and behaves as a liquid. At 

temperatures between ZST and ZDT, the steel has no ductility, but does have some strength due 

to the mechanical network between dendrites. As long as some liquid remains, the steel fails in a 

brittle manner due to rapid strain concentration and failure of the interdendritic liquid film. 

Below ZDT, the solidifying steel behaves as a solid with both strength and ductility.  
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The ZDT should, theoretically, be found at the non-equilibrium solidus temperature, where the 

solid fraction fS approaches 1. Won et al.[20] reported that the critical solid fraction at zero 

strength temperature corresponds to 0.75, based on a statistical assessment of microsegregation 

measurements and a finite difference model at various carbon contents and cooling rates.  

 

Non-equilibrium pseudo Fe-C phase diagrams are calculated using both the simple model and 

the present finite difference model, and are compared with ZST and ZDT measurements[22-24] 

in Figures 8, 9 and 10. The experiments were performed by melting steel samples in a quartz 

tube and conducting tensile tests on the solidifying steel using a Gleeble system. For the 

calculations, the length scale was calculated using λSDAS from Eq. (12) and the steel 

compositions are given in Table III.  

 

The non-equilibrium phase diagram in Figure 8 is calculated for steel S1 and compared with the 

ZST and ZDT measurements of Shin et al.[22] at a cooling rate of 0.17 oC/sec and a strain rate 

of 0.01 sec-1. The calculated ZDT is only 1.24 ~ 4.24 oC below the equilibrium solidus 

temperature, as shown in Table VI. Figure 9 is based on steel S2 for the ZST and ZDT 

measurements of Seol et al.[23] at 1.0 oC/sec and 0.01 sec-1. The calculated undercooling of 

ZDT below the equilibrium solidus temperature increases from 2.65 to 17.25 oC with increasing 

carbon content. Figure 10 is based on steel S3 and compared with the measurements of 

Schmidtmann et al.[24] at 10 oC/sec and 0.2 sec-1. The calculated undercooling of ZDT 

increases from 3.73 to 31.09 oC with increasing carbon content, as shown in Table VI. 
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The extent of segregation-related undercooling of the final solidification temperature (ZDT) 

increases both with increasing carbon content and with increasing the alloy content from steel S1 

(Fig. 8) to S2 (Fig. 9) to S3 (Fig. 10). Increasing carbon content extends the mushy zone. More 

importantly, the liquid concentration can exceed 0.53%C more easily, so γ-phase is more likely 

to form during solidification. For carbon contents less than about 0.1wt%, the δ/γ transformation 

takes place after solidification, so segregation undercooling is small. With greater carbon 

contents, some γ-phase forms during solidification. Diffusion through the closer-packed 

austenite structure is slower, so microsegregation increases and depresses the solidus 

temperature further below equilibrium. In particular, the segregation of S and P becomes 

increasingly important with increasing freezing range and austenite fraction. This is because 

these elements also have very low partition coefficients, which are even smaller for γ-phase than 

for δ-phase. Finally, the increasing depression of the solidus temperature from steels S1 to S2 to 

S3 is also caused in part by the increasing cooling rate for these three case studies. 

 

In all three figures 8 to 10, the measured ZST and ZDT data roughly agree with the calculated 

temperatures at which the solid fraction becomes 0.75 and 1.0, respectively. The results of the 

simple model also agree with those of the finite difference model. The slight discrepancy for 0.1 

~ 0.2wt%C steels is because the simple model does not account for the diffusion between solid 

phases that affects the peritectic reaction. Even so, the calculated starting temperature, Tstart
δ / γ , and 

ending temperature, Tend
δ / γ , of the δ/γ transformation roughly agree between the two models.  

 

Figure 11 compares predictions of the simple microsegregation model with experimentally 

measured liquidus[27-30], solidus[27-30], peritectic temperatures[27-29], ZST[22-24,26] and 
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ZDT[22-26]. The liquidus, solidus and peritectic temperatures were obtained by differential 

thermal analysis (DTA) at a range of slow cooling rates [27-30]. All calculations are in 

reasonable agreement with the measurements, although there is more scatter in the solidus 

temperature predictions. The ZST and ZDT measurements[22-26] agree well, as discussed 

previously. In summary, these test results show that the proposed simple microsegregation 

model can reasonably simulate a range of solidification phenomena, especially for steel. 

 

D. Discussion 

 

The solidus temperature measured by DTA is generally greater than the measured ZDT for the 

same conditions, especially for high carbon content. This is because the DTA measurement has 

difficulty detecting the solidification of the last few percent of liquid[56] which is found 

segregated at the grain boundaries and governs ZDT. The present model assumes these two 

temperatures are the same, and better predicts the ZDT, so solidus temperatures are naturally 

underestimated in high carbon steels, as shown in Fig. 11. The model thus appears to empirically 

incorporate both interdendritic and grain boundary segregation. A more sophisticated model 

might simulate both interdendritic microsegregation and macrosegregation at the grain size scale 

to account for the differences between grain boundary and interdendritic liquid. Such a model 

could resolve the apparent discrepancy by matching both measurements. Further research is 

needed with both modeling and measurements in order to quantify the behavior of alloys in steel 

during the final stages of solidification. 

 

VI. EFFECTS OF COOLING RATE AND SECONDARY DENDRITE ARM SPACING 
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The present simple microsegregation model was next applied to investigate the effects of 

cooling rate and secondary dendrite arm spacing on microsegregation for three steel 

compositions of 0.044, 0.18 and 0.8wt%C with 0.34%Si-1.52%Mn-0.012%P-0.015%S (i.e. 

based on steel S3 in Table III). To isolate the effect of cooling rate alone on microsegregation, 

the secondary dendrite arm spacings are first assumed to be constants of 44.1, 45.1 and 79.0 µm 

for carbon contents of 0.044, 0.18 and 0.8wt%C, respectively. Figure 12 shows the phase 

fraction results calculated with the present model as a function of temperature. The calculated 

non-equilibrium solidus temperature for all three steels decreases with increasing cooling rate 

from 1 to 100 oC/sec. The extent of the decrease increases from 3 to 74 oC for alloy content 

increasing from 0.044 to 0.8wt%C. 

 

To isolate the effect of length scale alone on microsegregation, the cooling rate is fixed at 10 

oC/sec for three different secondary dendrite arm spacings. Figure 13 shows the evolution of the 

phase fractions for the various spacings and steel compositions. The calculated non-equilibrium 

solidus temperature decreases slightly with increasing secondary dendrite arm spacing. The 

extent of the decrease increases from 12 to 50 oC for alloy content increasing from 0.044 to 

0.8wt%C. 

 

The solidus temperature has just been shown to decrease with both increasing cooling rate and 

increasing secondary dendrite arm spacing. In real casting processes, the secondary dendrite arm 

spacing itself evolves during solidification, specifically decreasing with increasing cooling rate. 

In the surface region, the secondary dendrite arm spacing is small, because the cooling rate is 
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high due to the large heat extraction. In the interior, the secondary arm spacing is larger due to 

the slower cooling rate. Thus, the two opposite effects should partially cancel in a real casting.  

 

In order to investigate the combined effects of cooling rate and secondary dendrite arm spacing, 

calculations were performed with both microsegregation models at the three cooling rates of 1, 

10 and 100 oC/sec using the secondary dendrite arm spacing obtained from Eq. (12). Figure 14 

shows the evolution of the phase fractions as a function of temperature for the conditions given 

in Table VII. As expected, the phase fractions calculated at 1 oC/sec are nearly the same as those 

at 100 oC/sec, because the secondary dendrite arm spacing decrease with increasing cooling rate. 

This shows that decrease in solidus temperature caused by increasing cooling rate is almost 

cancelled by the increase in solidus temperature accompanying the closer secondary dendrite 

arm spacing. For the 0.044wt%C steel, the solidus temperatures are the same within ± 0.1 oC, as 

shown in Table VIII part 3. For 0.18 and 0.8wt%C steels, the solidus temperatures still decrease 

by 7.6 and 17.9 oC, respectively, due to the combined effects of increasing cooling rate from 1 to 

100 oC/sec. The effect of cooling rate is more important than that of secondary dendrite arm 

spacing, so the cancellation is not perfect. However, these small differences contrast with the 20 

~ 70 oC changes in solidus temperatures predicted with independent changes in cooling rate or 

secondary dendrite arm (See Table VIII parts 1 and 2).   

 

VII. NON-EQUILIBRIUM PHASE DIAGRAM AND CRACK FORMATION 

 

Figure 15 shows the non-equilibrium pseudo Fe-C phase diagram for steel S3 at cooling rates of 

1, 10 and 100 oC/sec using the present analytical model. The secondary dendrite arm spacings 
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from Eq. (12) vary with both carbon content and cooling rate. For this model, the solid fractions 

of 0.0, 0.75, 0.9 and 1.0 are believed to correspond to the characteristic temperatures of Tliq, zero 

strength temperature (ZST), liquid impenetrable temperature (LIT) and zero ductility 

temperature (ZDT), respectively.  

 

The ability to accurately predict these temperatures is of practical consequence to the prediction, 

understanding and avoidance of cracks, such as hot tears. Cracks which form above the LIT, are 

refilled with liquid fed in from the bulk. Cracks, which form below LIT cannot refill, however, 

because the dendrite arms are close enough to resist feeding of the liquid. This critical 

temperature is proposed to correspond to a solid fraction of 0.9[19,57,58]. Figure 15 shows that 

the combined effects of cooling rate and secondary dendrite arm spacing on Tliq, ZST and LIT is 

not significant. However, the combined effects on ZDT are significant in steels above 0.1wt%C 

with high alloy content. This is due to the enhanced segregation of solute elements near the final 

stage of solidification and the lower partition coefficients for the γ-phase, relative to δ. With 

increasing carbon content, increasing the cooling rate lowers ZDT more, which increases the 

critical temperature range between LIT and ZDT. This suggests that the tendency for cracking 

during solidification should increase with increasing cooling rate, with increasing carbon content 

above 0.1wt%C and with increasing alloy content. 

 

Further complexities arise due to flow and macrosegregation, non-uniform heat transfer, 

thermal-mechanical deformation, and stress concentration. Further work is needed to incorporate 

the simple model presented here into other advanced macroscopic models to simulate fluid flow, 

heat transfer and stress during solidification processes. 



 

 29

 

VIII. CONCLUSIONS 

 

A simple analytical model of microsegregation based on the Clyne-Kurz model has been 

developed, which takes into account the effects of multiple components, columnar dendrites, 

coarsening and the δ/γ transformation for application to the solidification of steels. A new 

empirical equation for the secondary dendrite arm spacing, which varies with cooling rate and 

carbon content, has been proposed, based on measurements by several different researchers as 

follows. 
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Predictions with this microsegregation model agree with both experimental measurements and 

calculations with a detailed finite difference model. Model predictions for a range of steel 

compositions, cooling rates and secondary dendrite arm spacings reveal:  

1) The solidus temperature is lowered significantly with independent increases in either 

cooling rate or secondary dendrite arm spacing.  

2) In real castings, where spacings change with cooling rate, the effect of cooling rates less 

than 100 oC/sec on phase fraction evolution is insignificant in low alloy steels with less 

than 0.1wt%C, and for phase fractions below 0.9 in other steels.  
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3) Solute element concentration, especially phosphorus and sulfur, has a significant effect on 

solidus temperature and zero ductility temperature due to their enhanced segregation near 

the final stage of solidification.  

 

The simple analytical model presented here can easily and efficiently incorporate 

microsegregation phenomena into solidification calculations for use in advanced macroscopic 

models. 
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NOMENCLATURE 

CC  average carbon concentration (wt%) 

CL,i
ave  average liquid concentration during the δ/γ transformation (wt%) 

CL liquid concentration (wt%) 

Co initial liquid concentration (wt%) 

CR cooling rate (oC/sec) 

DS  diffusion coefficient (cm2/sec) 

fS  solid fraction 

fend
δ / γ  ending solid fraction of δ/γ transformation 

fstart
δ / γ  starting solid fraction of δ/γ transformation 

δfS  δ-phase fraction in the solid phase 

γfS γ-phase fraction in the solid phase 

i solute element (carbon, silicon, manganese, phosphorus or sulfur) 

k equilibrium partition coefficient 

m   slope of the liquidus line (oC/%) 

n slope of the TAr4 line (oC/%) 

Tliq liquidus temperature (oC) 

Tpure melting point of pure iron (1536 oC) 

Tsol solidus temperature (oC) 

TAr4 Ar4 transformation temperature (oC) 

Tend
δ / γ  ending temperature of δ/γ transformation (oC) 
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Tpure
δ / γ  temperature of δ/γ transformation of pure iron (1392 oC) 

Tstart
δ / γ  starting temperature of δ/γ transformation (oC) 

t time (sec) 

tf local solidification time (sec) 

X length scale of the microsegregation domain 

x width of the nodal area 

α Fourier number, Eq. (5) 

α+ Fourier number accounts for coarsening 

αC extra back-diffusion from coarsening = 0.1 

β back-diffusion parameter 

λSDAS secondary dendrite arm spacing (µm) 
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Table I. Equilibrium partition coefficients, diffusion coefficients and liquidus line slopes of the 
solute elements[39-43]. 

Element kδ/L kγ/L Dδ (cm2/sec) Dγ (cm2/sec) m (oC/%) n (oC/%) 

C 0.19 0.34 0.0127exp(-19450/RT) 0.0761exp(-32160/RT) 78.0 -1122 

Si 0.77 0.52 8.0exp(-59500/RT) 0.3exp(-60100/RT) 7.6 60 

Mn 0.76 0.78 0.76exp(-53640/RT) 0.055exp(-59600/RT) 4.9 -12 

P 0.23 0.13 2.9exp(-55000/RT) 0.01exp(-43700/RT) 34.4 140 

S 0.05 0.035 4.56exp(-51300/RT) 2.4exp(-53400/RT) 38.0 160 

Notes : R is gas constant in cal/mol and T is temperature in K.
 
 
 
Table II. Data for Al-4.9%Cu alloy experiments[21]. 

CR (oC/sec) tf (sec) λSDAS (µm) Eutectic fraction (%) 

0.1 980 91 5.54 

1.05 93.3 46 6.52 

11.25 8.72 23 6.84 

65 1.51 14 7.16 

187 0.52 10 7.50 
 
 
 
Table III. Chemical compositions of carbon steels (wt%) and cooling rates (oC/sec). 

Sample C Si Mn P S CR Ref. 

M1 0.13 0.35 1.52 0.016 0.002 0.045, 0.25 [17] 

S1 0.06-0.6 0.015 1.05 0.0009 0.0008 0.17 [22] 

S2 0.12-0.81 0.24 0.61 0.015 0.009 1 [23] 

S3 0.015-1.0 0.34 1.52 0.012 0.015 10 [24] 
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Table IV. Different microsegregation equation predictions of β for two sets of conditions (α 
values). 

 

β 
α 

Eq. (1) Eq. (2) Eq. (4) Eq. (7) Eq. (8) Eq. (9) Eq. (11) 

0.3738 1 0 0.7476 0.4278 0.5992 0.4336 0.6455 

3.773 1 0 7.546 0.8830 0.9376 0.8810 0.9388 
 
 
 
 
Table V. Variation of parameter tf / X2 at conditions for steel M1 (Table III). 

 Assumed DAS λSDAS in Eq. (12) 

CR (oC/sec) 0.045 0.25 0.045 0.25 

X (µm) 180 50 174 74.5 

tf (sec) 879.2 143.9 835.5 150.6 

tf / X2 (×10-2 sec/µm2) 2.714 5.756 2.760 2.713 

 
 
 
 
Table VI. Calculated solidus temperature using the Lever rule and simple model for steels S1, 
S2 and S3 (Table III conditions). 

0.044wt%C 0.18wt%C 0.8wt%C 
Sample 

 Lever rule Simple model Lever rule Simple model Lever rule Simple model

S1 1510.28 (oC) 1509.04 1486.78 1484.88 1344.55 1340.31 

S2 1502.55 1499.90 1473.63 1465.28 1331.39 1314.14 

S3 1491.59 1487.86 1460.73 1447.13 1318.49 1287.40 
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Table VII. Calculated secondary dendrite arm spacings from Eq. (12) for steel S3 (Table III). 

λSDAS (µm) 
CR (oC/sec) 

0.044wt%C 0.18wt%C 0.8wt%C 

1 137.4 103.7 182.0 

10 44.1 45.1 79.0 

100 14.2 19.6 34.4 
 
 
 
 
Table VIII. Calculated solidus temperatures using the simple model for steel S3 (Table III). 

0.044wt%C 0.18wt%C 0.8wt%C 
CR (oC/sec) 

λSDAS (µm) Tsol (oC) λSDAS Tsol λSDAS Tsol 

1. Constant secondary dendrite arm spacing 

1 44.1 1491.00 45.1 1455.64 79.0 1308.44 

10 44.1 1487.86 45.1 1447.13 79.0 1287.40 

100 44.1 1478.39 45.1 1428.13 79.0 1234.14 

2. Constant cooling rate 

10 137.4 1478.55 130.7 1434.06 182.0 1254.72 

10 44.1 1487.86 45.1 1447.13 79.0 1287.40 

10 14.2 1490.99 19.6 1454.00 34.4 1304.75 

3. Combined effects of cooling rate and secondary dendrite arm spacing 

1 137.4 1487.93 130.7 1450.38 182.0 1295.43 

10 44.1 1487.86 45.1 1447.13 79.0 1287.40 

100 14.2 1487.78 19.6 1442.83 34.4 1277.52 
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FIGURE LIST 
 
Figure 1 Comparison of the predicted and measured secondary dendrite arm spacings[47-51] as 
a function of carbon content at various cooling rates. 
 
Figure 2 (a) Schematic of the dendrite array morphology and (b) the corresponding transverse 
cross section assumed in the finite difference simulation. 
 
Figure 3 Numerical discretization of dendrite section for finite difference model domain. 
 
Figure 4 Eutectic fraction (Al-4.9%Cu alloy in Table 2) predicted with the simple model 
compared with experimental measurements[21] and the numerical prediction by Voller et al.[8]. 
 
Figure 5 Comparison of manganese concentration in the liquid calculated by various simple 
equations with the present finite difference model results (0.13%C steel M1 in Table 3). 
 
Figure 6 Comparison of carbon concentration in the liquid calculated by various simple 
equations with the present finite difference model results (0.13%C steel M1 in Table 3). 
 
Figure 7 Comparison of the calculated (a) manganese and (b) phosphorus concentration in the 
liquid phase and experimental measurements[17] (0.13%C steel M1 in Table 3). 
 
Figure 8 Non-equilibrium pseudo-binary Fe-C phase diagram of 0.015Si-1.05Mn-0.0009P-
0.0008S carbon steels at a cooling rate of 0.17 oC/sec, compared with ZST and ZDT 
measurements[22]. 
 
Figure 9 Non-equilibrium pseudo-binary Fe-C phase diagram of 0.24Si-0.61Mn-0.015P-0.009S 
carbon steels at a cooling rate of 1 oC/sec, compared with ZST and ZDT measurements[23]. 
 
Figure 10 Non-equilibrium pseudo-binary Fe-C phase diagram of 0.34Si-1.52Mn-0.012P-0.015S 
carbon steels at a cooling rate of 10 oC/sec, compared with ZST and ZDT measurements[24]. 
 
Figure 11 Calculated vs experimental liquidus[27-30], solidus[27-30], peritectic temperatures 
[27-29], ZST[22-24,26] and ZDT[22-26] in plain carbon steels. 
 
Figure 12 Effect of cooling rate on phase fraction evolution for three different steels calculated 
with simple model. 
 
Figure 13 Effect of secondary dendrite arm spacing on phase fraction evolution for three 
different steels calculated with simple model. 
 
Figure 14 Evolution of phase fractions with temperature during solidification for conditions in 
Table 6 calculated with (a) simple model and (b) finite difference model. 
 
Figure 15 Combined effects of cooling rate and secondary dendrite arm spacing (Eq. 12) on Tliq 
(fS=0.0), ZST (fS=0.75), LIT (fS=0.9) and ZDT (fS=1.0) of steel S3 (in Table 3) calculated with 
simple microsegregation model.  
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Figure 1 Comparison of the predicted and measured secondary dendrite arm spacings[47-51] as 
a function of carbon content at various cooling rates. 
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Figure 2 (a) Schematic of the dendrite array morphology and (b) the corresponding transverse 
cross section assumed in the finite difference simulation. 
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Figure 3 Numerical discretization of dendrite section for finite difference model domain. 
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Figure 4 Eutectic fraction (Al-4.9%Cu alloy in Table 2) predicted with the simple model 
compared with experimental measurements[21] and the numerical prediction by Voller et al.[8]. 
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Figure 5 Comparison of manganese concentration in the liquid calculated by various simple 
equations with the present finite difference model results (0.13%C steel M1 in Table 3). 
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Figure 6 Comparison of carbon concentration in the liquid calculated by various simple 
equations with the present finite difference model results (0.13%C steel M1 in Table 3). 
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Figure 7 Comparison of the calculated (a) manganese and (b) phosphorus concentration in the 
liquid phase and experimental measurements[17] (0.13%C steel M1 in Table 3). 
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Figure 7 Comparison of the calculated (a) manganese and (b) phosphorus concentration in the 
liquid phase and experimental measurements[17] (0.13%C steel M1 in Table 3). 
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Figure 8 Non-equilibrium pseudo-binary Fe-C phase diagram of 0.015Si-1.05Mn-0.0009P-
0.0008S carbon steels at a cooling rate of 0.17 oC/sec, compared with ZST and ZDT 
measurements[22]. 
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Figure 9 Non-equilibrium pseudo-binary Fe-C phase diagram of 0.24Si-0.61Mn-0.015P-0.009S 
carbon steels at a cooling rate of 1 oC/sec, compared with ZST and ZDT measurements[23]. 
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Figure 10 Non-equilibrium pseudo-binary Fe-C phase diagram of 0.34Si-1.52Mn-0.012P-0.015S 
carbon steels at a cooling rate of 10 oC/sec, compared with ZST and ZDT measurements[24]. 
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Figure 11 Calculated vs experimental liquidus[27-30], solidus[27-30], peritectic 
temperatures[27-29], ZST[22-24,26] and ZDT[22-26] in plain carbon steels. 
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Figure 12 Effect of cooling rate on phase fraction evolution for three different steels calculated 
with simple model. 
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Figure 13 Effect of secondary dendrite arm spacing on phase fraction evolution for three 
different steels calculated with simple model. 
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(a) 
 
 
 
 
 

Figure 14 Evolution of phase fractions with temperature during solidification for conditions in 
Table 6 calculated with (a) simple model and (b) finite difference model. 
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Figure 14 Evolution of phase fractions with temperature during solidification for conditions in 
Table 6 calculated with (a) simple model and (b) finite difference model. 
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Figure 15 Combined effects of cooling rate and secondary dendrite arm spacing (Eq. 12) on Tliq 
(fS=0.0), ZST (fS=0.75), LIT (fS=0.9) and ZDT (fS=1.0) of steel S3 (in Table 3) calculated with 
simple microsegregation model. 
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