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A two-dimensional finite element model has been developed to analyze turbulent, steady-state fluid
flow and heat transfer within the liquid pool of a continuous steel-slab-casting machine, using the
CFD code FIDAP. This high Reynolds number problem is often prone to instability in solving the finite
element equations. To help provide guidelines for achieving convergence to a good solution for prob-
lems of this type, various solution strategies, relaxation factors, and meshes have been investigated.
The effect of various numerical modelling parameters on the flow and temperature solutions are also
investigated. These include, in particular, the boundary conditions for K and € inlet conditions and
wall laws and the turbulent Prandtl number. Finally, the predicted flow patterns and velocity fields
show reasonable agreement with experimental observations and measurements conducted by using a
Plexiglas water model, and the predicted heat flux profiles closely match previous measurements.
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Introduction

Previous contributions to the understanding of turbu-
lent fluid flow in metallurgical processes, such as con-
tinuous casting, have come about mainly through in-
dustrial experiments and full-scale physical water
models.' ~* In recent years the decrease in computa-
tional costs and the increasing capability of commercial
modelling packages are making it possible to apply
mathematical models as an additional tool to under-
standing these processes. These models have the ad-
vantage of easy extension to heat transfer, which is
difficult with isothermal water models.

Almost all of the recent work that has been done to
model these liquid metal processes has used finite do-
main or finite difference programs.*'" Applying the
finite element method to solve these problems has the
important additional advantage of easy adaptation to
arbitrary complex geometries. However, experience in
using the finite element method for these problems is
very limited. Thus relatively little is known about the
solution strategies, modelling parameters, boundary
conditions, and convergence criteria required to obtain
an accurate, economic solution to this type of problem
using this method.

The present study was undertaken to investigate the
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effects of various numerical modelling parameters on
the finite element solution of a particular turbulent fluid
flow and heat transfer problem of some industrial im-
portance: the flow of molten steel in the mold of a
continuous casting machine. This example is intended
to suggest guidelines for modelling metallurgical pro-
cesses of this type, which are not widely known to the
process engineers using the programs.

This chosen example problem is a simplified part of
a larger system of models that are being developed to
calculate heat transfer, shrinkage, and stress devel-
opment in the solidifying shell and mold of a continuous
slab caster, shown in Figure I. The flow of liquid steel
contained within the solidifying shell is very influential
on the distribution of inclusion particles, which is im-
portant to the internal cleanliness and quality of the
steel. In addition, turbulent heat transfer to the shell
during the critical early stages of solidification greatly
affects steel surface quality, breakouts, internal struc-
ture, and crack formation. This process, and related
near-net-shape casting processes, involve complex
nozzle and mold cavity geometries, which the finite
element model is ideally suited to handle. The insights
provided from an accurate model would be valuable
in preventing defects and improving caster design and
operation.

The purpose of this study is to provide some insight
into the numerical aspects of the mathematical mod-
elling of turbulent flow problems such as this, using
the finite element method. The effects of various so-
lution strategies, streamline upwinding and initial con-
ditions, and mesh refinement on the convergence
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Figure 1. Schematic of continuous steel slab caster showing
mold, fluid flow, and shell growth

behavior, stability, and computational cost are inves-
tigated. A study was then conducted to determine the
model sensitivity to boundary conditions including in-
let, wall laws, K and e turbulence parameters, and
turbulent Prandtl number. Finally, the accuracy of the
model predictions of both fluid velocity and heat trans-
fer was validated through comparison with experi-
mental and empirical results.

Model formulation

A finite element model was developed to simulate fluid
flow and heat transfer within the domain illustrated in
Figure 2. This represents a two-dimensional, vertical
section parallel to the wide face through the center of
a continuous steel-slab-casting machine. This section
was chosen because the bifurcated nozzles used in slab
casters, combined with the high aspect ratio of the slab
mold, produce flow patterns whose major character-
istics are exhibited in these two dimensions.

Fluid enters the model domain through an inlet sur-
face that represents a nozzle port whose center is sub-
merged 0.265 m below the meniscus and 0.365 m below
the top of the 0.700-m-long mold. As the jet of liquid
steel leaving the nozzle impinges upon the cooled ‘‘nar-
row-face’’ wall of the mold, a solid shell forms, which
contains the liquid as it is withdrawn continuously from
the bottom of the mold. Thus the position of the shell
remains constant with time, and a steady-state analysis
can be used to calculate the flow and the heat transfer
that develop. The right side of the model domain is the
inside of the solidifying steel shell, which is adjacent
to the mold for the top 0.600 m. In this study, the top
3.00 m of a 1.32-m (52-inch)-wide slab caster was sim-
ulated, exploiting symmetry about the centerline, which
forms the left side of the model domain.

The flow is fully turbulent, even far away from the
nozzle, as is indicated by the calculated Reynolds num-
ber at mold exit of 10,700 (which is based on the data
in Table 1 and treating the rectangular mold as an
equivalent diameter pipe, D). Thus the two-equation
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Figure 2. Simulation domain and typical mesh used in the model

K-e model,'?'3 which has been used previously to sim-
ulate a variety of turbulent flows,*'® was chosen to
incorporate the effects of turbulence on the momentum
and heat transfer. This model is far from perfect but
appears to be the most accurate and robust model cur-
rently available.

This two-dimensional, steady-state, incompressi-
ble, fluid flow problem must solve for two unknown
velocity distributions, v,, and v,, and the pressure dis-
tribution, p, which are governed by the continuity (vol-
ume conservation) equation and two momentum equa-
tions:

v, dv,
—+—==0 (1)
ox ay
dv, AU, ap d Jdv,
Uy— + v, === of .+ 2= P
p< ox ay> ox i ox (“ " 6x>

Lo, (e
dy Hel dy  ox
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The effective viscosity, u.s, needed in equations (2)
and (3) is greatly enhanced by the turbulent motion
and is defined as the sum of molecular and turbulent
(or eddy) viscosity components:

Megr = Mo + “)

where w, is found from the K and € model parameters
by

Kz
Me = CMP? ®)

These are in turn found by simultaneously solving two
additional transport equations for the turbulent kinetic
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Table 1. Standard simulation conditions
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Half caster width simulated
Caster length simulated
Nominal nozzle angle (at inlet)
Nozzle submergence depth
Casting speed

Inlet casting temperature
Fixed wall temperature
(liquidus solidification temperature)

Surface heat transfer coefficient
Ambient temperature
(above top surface of powder layer)

Convergence strategy

0.660 m (52-in.-wide mold)
3.00 m

15° downward

0.265 m

0.0167 m/s

1550°C
1525°C

40 W/(m?3K)
27°C

16 Suc. Sub. Iters. with RF = 0.4

energy, K, and its rate of dissipation, e:

Mesh size (node grid density) 40 x 75

Number of nodes across inlet 8

Inlet jet width, w 0.0148 m

Inlet and initial K (kinetic energy) 0.0502 m?%/s?

Inlet and initial e (dissipation) 0.457 m?/s®

Inlet peak velocity, vx and v, 1.062 m/s and 0.471 m/s

Initial velocity guess 0.0

Boundary conditions at wall Wall law 2

Thickness of laminar boundary, x, 0.01 m

Molecular viscosity, wo 0.00385 kg/(ms)

Density, p 7020 kg/m?

Molecular thermal conductivity, ko 26 W/(mK)

Specific heat, C, 680 J/(kg K)

Turbulent Prandtl Number, Pr; 0.9

Dimensionless parameters:

Reynolds number (inlet) 121,300

Reynolds number (outlet) 10,700

Grid molecular Reynolds number (inlet) 3,560

Grid turbulent Reynolds number (inlet) 25

Grid molecular Reynolds number (outlet) 490

Grid turbulent Reynolds number (outlet) 6

Grid Peclet number (inlet) 356

Grid Peclet number (outlet) 49

Laminar Prandtl number (uo Cp/ko) 0.1

Brinkman number (uo V?2)/(ko AT) 2.07e-08
oT oT Jd oT dJ oT

pCol vi— + oy | = — | ketr = |+ — | ke

0x ay 0x x ay dy

oK oK d [ 0K d [ w 0K
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These equations involve five empirical constants, which
produce reasonable results for a wide range of flows
when given standard values!>~'* as follows:

C,=1.44, C, =192, C,.=0.09,
Ok = 10, [ 1.3

The temperature distribution, 7, is found by solving
the steady-state energy equation
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+ pee®  (8)

K and € have an important effect on the heat flow
solution owing to their influence on w,. In addition to
controlling the generation of kinetic energy (the last
term in equation (8)), u, greatly enhances the effective
thermal conductivity, kg

keff = k() + k, (9)
where
Cotte
k,=—£= 1
Pr, 0

and the turbulent Prandtl number, Pr,, is an additional
empirical constant that controls the turbulent thermal
conductivity, k.

Buoyancy effects were neglected in the present anal-
ysis. Thus the energy equation was uncoupled from
the other equations, and temperatures were calculated
on the basis of the previous velocity solution. This



Finite element modelling in continuous casting: B. G. Thomas and F. M. Najjar

assumption is valid in the region of interest near the
inlet, where the dimensionless parameter, Gr/Re?, is
0.0037. Lower in the caster, however, natural convec-
tion will become important. Single-phase flow was also
assumed, so effects such as those from argon gas bub-
ble injection are not considered.

Boundary conditions

The governing equations are subject to boundary
conditions along every edge of the computational do-
main (the mesh), illustrated in Figure 2.

Narrow face wall. To avoid the computational dif-
ficulties associated with modelling latent heat evolu-
tion during solidification below the liquidus tempera-
ture, fluid flow and heat flow were modelled up to, but
not including, the mushy zone. Thus the edge of the
mesh along the narrow face wall was defined to cor-
respond to the outer extent of the laminar boundary
layer found adjacent to the solid shell against the nar-
row face wall. Here, ‘‘wall function’’ boundary con-
ditions were imposed to account for large property
variations within this laminar mushy zone close to the
solid shell wall, where the K-e model equations are no
longer valid. Along this vertical boundary the velocity
normal to the wall, v,, is set to zero, and the tangential
velocity gradient is imposed by using an empirical func-
tion:

v, =0 (11)
I (12
x |U.V|

where vy is the empirically calculated friction velocity,
which depends on the values of K and € at the wall.
Boundary conditions must also be imposed on the
K and e fields at the wall. Two different sets of con-
ditions were investigated, referred to as wall law 1:

K=C;%0 (13)
3
Dy = ——2 (15)

X,
In <E u)

Mo
which is the most commonly used,®®!' and wall

law 2:
K
K _,

16
P (16)
0.751.5
PN &P’ i (17)
KX,
KU,
vt = " <E px,,CI;O'25K°'5> (18)
Mo

The additional constants needed in the wall law equa-

tions are defined in the nomenclature. Reducing the
wall roughness constant to simulate the rough surface
of the dendrite wall was found to increase the sharp-
ness of the heat flux peak, with few other effects.

No wall law was used for temperature. Instead, it
was assumed that the laminar zone consisted solely of
the interdendritic, or ‘‘mushy region’’ between the tips
of the dendrites, at the liquidus temperature, and the
fully solid shell, as pictured in Figure 3. Consequently,
the temperature along the vertical narrow face edge of
the model, corresponding to the dendrite tips, was set
to the liquidus temperature. This assumption has been
found to be reasonable for natural convection heat
transfer during metal alloy solidification.!* It has the
great computational advantage of forcing latent heat
evolution to occur entirely outside the simulation do-
main. The average thickness of the mushy region, which
is known from calculations using solidification models,
was thus used to define the boundary layer thick-
ness, X,.

To account for solidification of the solid shell against
the mold wall, the narrow face computational bound-
ary was tapered inward with distance down the mold
wall for some runs. This required a nonzero normal
velocity through the narrow face wall to account for
steel leaving the computational domain by moving across
the solidifying shell interface:

_ casting speed * final shell thickness
model domain length

UN (19)
As was expected, the model results were insensitive
to the exact value of this small change in the domain,
which varied from 0 to 0.04 m at exit from the domain,
3 m below the meniscus.

Inlet. To derive the inlet velocity boundary condi-
tions at the nozzle ports, a mass balance was performed
in two dimensions, setting nozzle port length * nozzle
outlet velocity equal to mold outlet width * casting
speed. An eight-node, parabolic input velocity profile
was employed both to satisfy this constraint and to
achieve the same average and peak velocities into the
mold as are found through the actual casting nozzle
port. To achieve this, the nozzle port length had to be
adjusted by using the above mass balance equation.

Components of the nozzle port velocity and values

Tip of dendrites

—ed f laminar z \ Mushy zone, x
] :céz g;iz“r:;;:{;io(:]neal domain ,/\( R \\i

(Liquidus temperature)
narrow face Y

mold wall

Turbulent
liquid:
steel jet

Figure 3. Schematic of model treatment of near-wall region
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for K and € were fixed across the inlet boundary surface
of the model. The accuracy of this method hinges on
finding reasonable values for v,, v,, K, and € at the
inlet. These values were therefore calculated by using
a separate fluid flow model of the nozzle itself, which
we discuss later. Temperature across the inlet was fixed
at the casting temperature of 1540°C.

Bottom outlet. Normal gradients of all variables (in-
cluding v,, v,, K, €, and T) were left at zero along the
bottom outlet surface of the computational model do-
main. Constraining the outlet flow in any other way,
such as fixing the outlet vertical velocity to the casting
speed, was found to produce unrealistic results.

Top surface and centerline. Along the centerline
symmetry plane (the left side) the normal velocities
were constrained to zero, and gradients of other vari-
ables were left at zero. The same constraints were
imposed along the top surface of the model, except for
temperature. Here, heat is lost via conduction through
three powder layers and radiation and convection to
the ambient temperature above the top powder layer
surface. This was represented by an equivalent con-
vective heat transfer coefficient of 40 W/m? and an
ambient temperature of 27°C. Observations of casters
and water models indicate that the surface is relatively
quiescent, so no free surface representation was re-
quired or attempted.

Solution methodology

The equations described above were converted into
simultaneous algebraic equations by using the finite
element method, assembled and solved by the com-
mercial program FIDAP.!* A penalty function ap-
proach, using a penalty parameter of 10 8, was used
to satisfy continuity without solving an additional PDE
(see Ref. 15 for more detail). The standard conditions
assumed in the model runs are given in Table 1. The
standard mesh, shown in Figure 2, consists of a 39 X
74 grid of four-node linear, quadrilateral elements and
74 two-node linear wall elements along the right side
boundary. All meshes were graded to provide smaller
elements near the walls and inlet area. Although var-
ious solution strategies were investigated, most runs
employed 15-30 successive substitution iterations, us-
ing an underrelaxation factor, RF, of 0.3 or 0.4, until
the relative error in the residual force vector was stably
reduced to less than 1%. Experience is required to
control the solution procedure to achieve convergence
for each given simulation, which will be discussed later.
Numerical stability was improved by activating a Pe-
trov-Galerkin formulation or streamline upwinding.'®
Computation times required for different computers
are summarized in Table 2.

Nozzle model

The characteristics of the fluid leaving the sub-
merged entry nozzle have a great influence on both
fluid flow in the mold and heat transfer to the growing
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shell.'” To determine the proper boundary conditions
for the inlet of the caster model (v,, vy, K, and ¢€), a
separate model for fluid flow within this nozzle has
been developed. The model is currently based on a 76-
mm diameter bifurcated nozzle with square 65 X 90
mm outlet ports angled at 15° down from the horizontal.
The vertical velocity into the top of the nozzle was set
to the profile characteristic of fully developed turbulent
flow, known as the power-law or seventh-root profile!s:'
whose average was calculated through a two-dimen-
sional mass balance as described earlier. K and € were
computed as functions of distance across the inlet using
a mixing-length approximation®® whose values average
about 0.0045 and 0.02, respectively. Boundary con-
ditions and solution strategy were similar to that em-
ployed in the full caster model, and convergence was
rapid and computationally inexpensive. Further details
are given elsewhere.?!

A typical two-dimensional flow pattern in the nozzle
is shown in Figure 4. Calculations confirm observa-
tions of physical water models that the flow leaves the

Table 2. Computational requirements (40 X 75 mesh)

CPU time (s/iter) CPU time (s/iter)

Computer (direct solver) (indirect solver)
Ridge 32 S 2400
Iris 4D/20 (8 MB RAM) 1200 180
Iris 4D/20 (16 MB RAM) 600 120
Convex C1-XP 150
Cray-2 50 15
Cray X-MP 48 40

SN
W17/

Figure 4. Flow from nozzle used to determine inlet boundary
conditions
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nozzle at a steeper downward angle than the nominal
angle built into the nozzle exit ports.?! In addition, the
velocity distribution over the nozzle outlet is skewed,
most of the fluid leaving the lower half of the nozzle
port openings and some recirculating fluid actually en-
tering the upper part. This distribution is reasonably
approximated by a truncated parabolic velocity profile,
which was used as the inlet condition for the mold
model. Weighted average K and € values were calcu-
lated across the outlet ports and used as inlet condi-
tions for most mold simulations. These inlet conditions
were based only on the magnitude of the positive out-
wardly flowing velocities leaving the bottom of the
nozzle.

Convergence strategies

To understand the convergence behavior of this prob-
lem, it is helpful to examine the equations involved in
the finite-element method. Assembly of the governing
equations applied to each element produces a global
system of nonlinear algebraic equations that can be
expressed as

[K(U)KU} = {F} (20)

where the solution vector {U} = {v,, v,, p, T, K, €},
{F} is the force vector, and the global stiffness matrix,
[K], can be decomposed into

[K(U)] = [Kal + [K(U)] 21

where [K,] represents the contribution of the diffusion,
pressure, and continuity terms and [K.(U)] consists of
convective terms and thus depends on the solution
vector, {U}.

The highly nonlinear aspects of the governing equa-
tions for this turbulent, recirculate flow field made the
solution to the present problem prone to instability.
This is typical for high Reynolds number problems and
arises because the low viscosity reduces the impor-
tance of [K,], making the nonlinear [K.] dominate the
solution. Use of the K-e turbulence model actually con-
tributes to improving stability. It does this by increas-
ing the effective viscosity by several orders of mag-
nitude, thereby increasing the importance of the linear
[K,] terms and substantially reducing the grid Reynolds
number (from 3560 based on molecular viscosity to 21
based on effective viscosity).

It is difficult to generate an iteration scheme for
reaching convergence in problems of this type and to
decide when convergence to the ‘‘proper solution’’ has
been achieved. To help provide guidelines for these
decisions, an investigation of ‘the effect of various it-
eration strategies on the convergence of this problem
was conducted.

The best, most efficient method investigated was
found to be simple, relaxed successive substitution, in
which the linearized equations are solved implicitly or
“directly”’ in each of 15-30 iterations. This strategy
uses the solution calculated at the previous iteration
to help evaluate the nonlinear terms in [ K] for the next

iteration:
[K(U;-){U*} = {F} (22)

To suppress oscillatory behavior, the next guess of
the solution vector is ‘‘relaxed,’’ using a linear com-
bination of the new solution vector, {U*}, and the one
obtained at the previous iteration:

{U} = RF{U*} + (1 = RE}{U, -} (23)

The relaxation factor, RF, is the fraction of the new
solution that is used to calculate nonlinear terms for
the next iteration. The error in the solution is given by

{R} = [K(U;- )R{US — {F} (24)

Convergence is attained only when this error is small.
The percent error in the residual (relative to the mag-
nitude of the initial residual vector), |R;|/|Ro| X 100%,
is required to decrease from its initial defined value of
100% to below some chosen tolerance. At the same
time the solution vector should change very little
between successive iterations, so that the percent
difference between successive solution vectors,
U;: = U— Ul X 100%, is less than another toler-
ance. These two criteria together are reported to ‘‘mea-
sure’’ the solution accuracy.!'>?> Choosing these tol-
erances is a difficult task, however.

The behavior of these two convergence criteria dur-
ing the numerical simulation is shown in Figures 5 and
6, which also illustrate the great importance of the
relaxation factor. Initially, the relative error in the re-
sidual decreases most rapidly with a high RF, but it
eventually becomes oscillatory, as is indicated by fol-
lowing the history of percent residual error in Figure
5. The onset of oscillation is delayed by lowering the
relaxation factor, to use more of the old solution in the
next guess, thereby increasing stability of the solution.

1000

0 -=-0-=- RF=07
100 %y
- g

——®— RF=0.7(3lters)

=0.2 (31 lers)

\ ---m-s RF=06
10F —O— RF=05
—&— RF=04

— R

£

=0.4 (10 lters)
= 0.1 (27 Iters)
=03

=02

1F ) RF=0.1

Percent Error in Residual, IR/IRol

O1F

.001 . . t Y
0 10 20 30 40 50

Number of Iterations

Figure 5. Effect of relaxation factor on convergence behavior:
Relative error in residual (%)
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Percent Difference between successive
solution vectors, IV(i-1)-VI)NV(@i)!

01 F

.001
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Figure 6. Effect of relaxation factor on convergence behavior:
Difference between successive solution vectors (%)

A striking feature of all of the stable runs in Figure
5 is the monotonic decrease in percent residual error
by the same ratio in each iteration. This behavior can
be examined theoretically by forming the ratio between
residual vector at two consecutive iterations:

{R}  [KWU;_){U} - {F}
{Ri-}  [K(Ui—»){U;_i} — {F}
Assuming that [K] does not vary much between iter-
ations, then substitution of equation (23) into (25) yields
{R}  RFIK{U*} + (1 — RF)IKKU; .} — {F}
R} [K{U; -} — {F}

(25)

(26)
Further substitution of equation (22) into (26) yields
Ry (- RF)KKU; } — (1 — RF){F}
{Ri 1} [KKU; -} — {F}
=1—-RF 27)

Thus the percent residual error should decrease
monotonically by the ratio (1 — RF) in each iteration.
This convergence rate is manifested by the straight
downward slopes of the residual error curves in Figure
5. Itis achieved when [ K] does not vary much between
successive iterations, which occurs when [K,] domi-
nates the stiffness matrix. Naturally, this is true ini-
tially, since the initial velocities were zero, and it is
also true during the early iterations of the simulation
when [ K] is small and the residual error is high. Sur-
prisingly, this condition also held very close even dur-
ing later iterations for all RF tested for this problem,
as long as the solution did not go unstable.

The exponential decrease in residual error implied
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by this factor of (1 — RF) therefore represents the
maximum attainable convergence rate for a given re-
laxation factor. Faster convergence is obviously
achieved when the substitution is relaxed as little as
possible, by using large values of RF, as long as un-
stable oscillation can be avoided.

This knowledge can be used to develop a better
strategy to reach stable convergence by systematically
changing RF as the solution proceeds. The conver-
gence rate is accelerated early by using a large RF to
greatly reduce the large initial error while [ K] is linear.
Later, a smaller RF is used to increase stability and
suppress the tendency toward oscillatory behavior. This
is needed for convergence during these latter itera-
tions, since the velocities increase and the equations
become more nonlinear.

Figure 5 illustrates the benefit of using this com-
bined strategy, starting with a high relaxation factor
(0.7) for a few iterations (three) and then switching to
a smaller one (for example, 0.2) for the remaining 31
iterations. This produces the same downward slope
after restarting as obtained using RF = 0.2 from the
initial 100% error. Thus a significant savings in com-
putation is possible.

Combining two lower relaxation factors, RF = 0.4
then RF = 0.1, can increase stability for a more dif-
ficult run. However, it is less efficient, since the re-
sidual error does not reach 0.020% until the 37th it-
eration, compared to only 27 iterations required for the
RF = 0.7/0.2 strategy.

Other convergence criteria

The previous discussion has focused on the residual
error as a reliable indicator of convergence. In con-
trast, Figure 6 shows how the percent difference be-
tween successive solution vectors is not as reliable.
Sometimes it increases while the solution is still stably
converging; other times it decreases while the solution
has become oscillatory and poor (for example, RF =
0.7 from 10 to 20 iterations). Another example is the
factor of 5 reduction in percent difference that sharply
occurred upon changing RF from 0.4 to 0.1. This might
be misleading, since it merely reflects the smaller change
in solution vector that accompanies the slower rate of
convergence that occurred after changing RF (which
is clearly seen in Figure 5). Thus, following the history
of the residual error gives a clearer understanding of
the convergence.

Figure 7(a) shows the streamlines for a smoothly
converged solution obtained after 12 iterations using
RF = 0.3 and standard conditions. The solution (which
had a 0.7% error in residual, 0.03% difference between
successive solution vectors) was almost identical to
that of a highly converged solution (0.007% error in
residual, 0.0015% difference between successive so-
lution vectors).

The residual error alone is an insufficient indicator
of convergence to a reasonable solution. Evidence for
this is provided in Figure 7(b), where a solution was
obtained (after 25 iterations using a relaxation factor
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(@) (b) (c)

Figure 7. Velocity vector profile in the mold for three conver-
gence schemes: (a) smooth converged solution (12 iterations
with RF = 0.3) (0.7% error in residual, 0.03% difference between
successive solution vectors). (b) oscillatory (25 iterations with
RF = 0.6) (0.5% error in residual, 0.4% difference between suc-
cessive solution vectors). (c) same as part (a) with high initial
guess of velocity (0.08% error in residual, 0.01% difference be-
tween successive solution vectors)

of 0.6) that had a residual error of 0.5%, which is better
than the good solution in Figure 7(a). However, the
residual error had been oscillating significantly be-
tween successive iterations, and the difference be-
tween successive solution vectors was 0.4%. The flow
field computed can be seen to be qualitatively unrea-
sonable, even though its mass balance was good. Since
it is not obvious that 0.4% is too high a difference,
close attention to the history of the residual error might
be a better criterion for deciding when a solution is
oscillatory and not to be trusted.

Initial conditions

The effect of the initial guess of the velocities on
the convergence behavior is shown in Figure 7(c). The
model was run from a high uniform initial velocity, v,,
of 2 m/s. Even though the numerical simulation was
stable and converged rapidly, the velocity field is qual-
itatively unreasonable. However, this ‘‘solution’” ap-
pears to represent a ‘‘local minimum,”” where mass

conservation is satisfied and error parameters are very
low, even though the velocities are far away from the
true solution. (If the fluid properties are altered greatly
in this problem, the flow pattern in Figure 7(c) could
become the correct solution.) Thus, choosing good ini-
tial conditions is a very important factor in attaining a
fast converging solution. In the absence of good in-
formation for this guess, setting initial velocities to zero
appears to be the best choice, since this helps to lin-
earize the equations for the early iterations.

Upwinding

The primary cause of instability in the numerical
simulation appears to be the large grid Reynolds num-
ber. The stability of the turbulent problem has been
enhanced by adopting the Petrov-Galerkin formulation
or streamline upwinding.'®-2*-25 By preparing the
downstream elements for the flow before it arrives,
this method greatly improves stability of the solution.
However, upwinding also falsely increases diffusion
by artificially enhancing the viscosity in the momentum
equation.?* This in turn increases turbulent conductiv-
ity for the heat transfer problem, even though it has
no effect on solution of the linear energy equation in
the present problem.

A solution made to converge at great difficulty with-
out upwinding revealed that this method has minimal
effect on the calculated velocities and only a small
effect on the heat transfer. Increasing the upwinding
factor from 0.5 to 1.5 in the velocity solution was found
to increase the heat flux by a maximum of 13% at the
peak. There was almost no difference in heat flux be-
yond the impingement region, since the upwinding
scheme avoids ‘‘cross-wind’’ false diffusion.’

Mesh refinement

Mesh design is a very critical aspect of numerical mod-
elling, particularly for the finite element method. The
present study investigated convergence behavior and
computational time for a variety of meshes, using the
same simulation conditions as are outlined in Table 1.

All meshes studied were found to produce similar
velocity predictions when converged. However, a finer
mesh near the wall boundaries was required for ac-
curate temperature predictions in order to resolve the
steep velocity and temperature gradients there. Coarser
meshes produced lower heat flux to the wall, partic-
ularly at higher casting speeds, where the increase in
Reynolds number, caused by the higher average ve-
locities, increased convergence difficulty for a given
mesh. Thus the 40 X 75 node mesh was chosen as
optimum for the present problem.

Numerical stability was found to improve as the
mesh was refined. Thus fewer iterations were required
for convergence on a finer mesh, since a larger relax-
ation factor could be used. For example, the 40 X 75
mesh converged to 0.05% residual error in 23 itera-
tions, while a 20 X 40 mesh required 40 iterations. The
increase in stability can be understood by considering
that the grid Reynolds number at the outlet (based on
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Figure 8. Effect of mesh refinement on computation time
(7 X j node grid)

o) decreased from 1100 for the 20 X 40 mesh to only
490 for the 40 x 75 mesh.

The CPU time required per iteration is summarized
for different meshes in Figure 8. The observed trends
are roughly consistent with the correlation®® that the
computational cost for a direct solver is proportional
to the square of the bandwidth multiplied by the total
number of nodes in the mesh. Thus for a constant
number of nodes per row the bandwidth is constant,
so the CPU time per iteration rose linearly. When the
mesh density was doubled in both directions simulta-
neously, this cost increased by a factor of 13, which
is close to the 16-fold increase predicted by the cor-
relation. This high cost escalation for mesh refinement
more than offsets the stability advantages of finer
meshes. It provides a large incentive to find more com-
putationally efficient solution methods for large prob-
lems.

Other iteration strategies

Prior to the choice of the direct solution method (re-
laxed successive substitution), which was discussed in
depth in the previous sections, several other iteration
methods were investigated to obtain the solution. The
first such strategy attempted to reach the steady-state
solution by time stepping through the initial transient.
Although this method appeared likely to succeed, far
more than the 15-30 steps needed for a reliable steady-
state solution were required, so this strategy is pro-
hibitively costly. This finding indicates that direct sol-
vers are much better suited to iterative schemes to
reach the steady-state solution. This might not be the
case if indirect solution methods or explicit integration
schemes had been tested with this method.

The Newton-Raphson iteration approach, which has
proven to be very successful for solving nonlinear finite
element stress problems, was found to produce ex-
tremely unstable behavior in the present flow problem,
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regardless of how close the initial guess was to the final
solution. For example, restarting a run that had already
converged to within 0.2% by using Newton-Raphson
iteration diverged to a 1000% error in only two itera-
tions.

Another solution strategy, designed to enhance the
importance of [ K,] and thereby improve stability, was
to slowly increase the Reynold’s number in stages from
an artificially low initial value. This strategy involved
iteration within each of about six steps that composed
a single run of the model. The first step used a viscosity
100 times larger than the true u, and started with one
tenth the proper density. After a reasonably converged
solution for this artificially viscous fluid was obtained,
by incrementing the density over ten iterations, the
results were used as the initial guess for the next step
with a higher viscosity. Over successive steps the fluid
properties were gradually altered to approach their
proper values. This method was extremely time con-
suming and computationally expensive. However, it
was successfully employed to solve for the flow field
for the computationally difficult boundary condition of
zero gradients for K and e at the inlet. Combining this
stepwise increase in the Reynold’s number with suc-
cessive substitution is a very robust method to achieve
a solution for extremely unstable problems.

Finally, an indirect solution method was tested. This
method divides up {U} in equation (20) and solves for
vy, Uy, K, €, T, p, and Ap as seven uncoupled systems
of equations, using a pressure projection technique.'’
This ‘‘segregated solver’” needs 15 to 20 times less
CPU storage and significantly less computation time
at each iteration. However, many more iterations are
needed to reach convergence, since the system is not
completely self-consistent at the end of each iteration.
This method requires a relaxation factor for each un-
known degree of freedom, and higher values can be
used before stability problems are encountered. Figure 9
shows that convergence to 0.03% on the present prob-
lem required 325 iterations, using relaxation factors
(RF) of 0.85 for v,, v,, K, and €. The convergence
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Figure 9. Convergence history of x-velocity component using

the segregated solver: Difference between successive vy solu-
tion vectors (%)
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behavior of this method is similar to that of the direct
methods. As Figure 9 shows, increasing the relaxation
factors after 50 iterations reduced the number of it-
erations required for 0.1% convergence from 250 to
only 150. Unrecoverable oscillation and a poor solution
resulted when the relaxation factors were increased
further.

The computational cost per iteration for this method
is about five times less than that of the direct solvers,
as is shown in Table 2. The speedup is most pro-
nounced on workstations with limited CPU RAM stor-
age. Moreover, this cost increases only linearly with
the number of nodes in the mesh, compared with quad-
ratic or more increases for the direct solvers. However,
for the present problem and mesh the increased num-
ber of iterations required (ten times more than the di-
rect solver) overcomes this improvement, so this method
was less economical. As the mesh is refined, more
iterations appear to be required for convergence, which
is contrary to experience with direct solvers. These
findings suggest that the segregated solver might be
useful only for very large problems, such as are en-
countered in three-dimensional simulations, in which
reduced RAM storage becomes an important advan-
tage as well.

K and € boundary conditions

Having established a reliable procedure to obtain con-
vergence, the effect of various numerical parameters
on the solution were investigated. The boundary con-
ditions on the K and e parameters were found to be
very influential on both the results and numerical con-
vergence.

Effect of inlet conditions

The importance of the K and e values used across
the inlet plane of the caster model is shown in Figure
10. Significant differences in the angle of the jet leaving
the inlet can be seen with different boundary condi-
tions. Increasing K appears to steepen jet angle while
increasing e decreases it. These turbulence parameters
also have an important influence on the temperature
field. Thus it is crucial to find acceptable values for
these parameters at the inlet.

The first method employed to get around this prob-
lem was to set the gradients of all variables, including
K and €, to zero across the inlet. Unfortunately, this
proved to be very computationally expensive, since
the solution had poor stability and required incremen-
tal adjustment of fluid properties and about 100 iter-
ations before convergence was reached. This required
roughly five times the execution time of the method
that is currently used, although it produced similar flow
results. Fixing K and e inlet values results in much
more stable convergence behavior.

The present procedure prescribes values for K, e,
vy, and v, across the inlet plane to the mold (see Table
I) using the model of the nozzle introduced earlier.

K=0.00
e=2.12 £=0.77 s e=1.77

Figure 10. Effect of K and € inlet values on calculated velocities

Nozzle model runs using a variety of inlet boundary
conditions, including the variable profiles based on fully
developed pipe flow, determined that the velocities,
K, and € at the nozzle outlet were insensitive to the
values of K and e used at the nozzle inlet. This finding
was expected, since the turbulence levels leaving the
nozzle are determined mainly by the major flow changes
occurring near the bottom of the nozzle. Thus by mov-
ing the less certain K and € boundary conditions farther
upstream, flow in the area of interest in the caster
interior was made insensitive to the exact values of K
and e employed as mold inlet boundary conditions.

Effect of the wall law

In addition to being important at the inlet, the
boundary conditions for K and e are very influential
at the other edges of the computational domain. They
were next investigated by varying the wall law along
the narrow face wall where the shell grows.

Figures 11 and 12 show that neither the streamlines
nor the velocity profile along the jet axis are much
affected by the wall function set employed. However,
the wall law has a great effect on the turbulent kinetic
energy and turbulent viscosity distribution. Figure 13
shows that differences between the K profiles increase
with distance from the fixed inlet value. Along the edge
of the computational domain, wall law 2 produces K
values that are more than ten times greater than wall
law 1 (see Figure 14) and 1000 times greater at the jet
impingement point. Wall law 1 produces an unrealistic
sharp minimum in kinetic energy at the impingement
point instead of the expected increase. This problem
arises because equations (13)—(18) for wall law 1 were
derived by assuming that the flow pattern was remote
from recirculating or detachment regions and stagna-
tion points. Near such points, v* vanishes, leading to
low turbulence values. Wall law set 2 does not have
this problem, since the K and e fields are not as closely
linked to the velocities at the wall. It therefore produces
more appropriate flow characteristics near the stag-
nation region at jet impingement.

Figure 15 shows that the turbulent viscosity behaves
in the same manner as K, with lower overall values
and a sharp decrease at the jet impingement point for
wall law 1, reflecting the domination of K (as compared
to €) in determining w,. This effect of wall law on the
turbulent viscosity has a corresponding high influence

Appl. Math. Modelling, 1991, Vol. 15, May 235



Finite element modelling in continuous casting: B. G. Thomas and F. M. Najjar

(a) (b)

Figure 11. Effect of wall law boundary conditions on calculated
streamlines. (a) Wall law set 1. (b) Wall law set 2

on the temperature distribution inside the caster, through
its effect on k.

The important effect of wall law on the temperature
field and heat flux profile down the narrow face are
illustrated in Figures 16 and 17. The lower u, of wall
law 1 greatly reduces k. at the wall, which reduces
heat flux out of the wall and increases temperature in
the liquid. The temperature contours in Figure 16 for
wall law 1 are indicative of the lower thermal diffusion,
the heat following the path of the jet much further than
is encountered using wall law 2. Figure 17 shows the
significant overall decline in heat flux produced using
wall law 1. Wall law 1 also produces a sharp drop in
heat flux at the impingement point, corresponding to
the lower turbulence levels there. In contrast, results
using wall law 2 are physically reasonable, with the
maximum heat flux at the point of impingement where
expected.

The effect of altering the wall boundary conditions
was investigated further by modifying the boundary
conditions on K in wall law 2. Instead of applying a
zero gradient for the turbulent kinetic energy, the K
at the wall was fixed to low and then high values on
successive runs. This boundary condition had the ad-
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Figure 12. Effect of wall law on velocities calculated within the
jet
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Figure 13. Effect of wall law on turbulent kinetic energy distri-
bution within the jet

vantage of greatly accelerating the convergence rate
of the solution, requiring only 15 iterations to con-
verge, compared to 30 iterations required for the zero-
gradient condition. This improvement is probably due
to the inherent increase in stability of fixed wall con-
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Figure 15. Effect of wall law on turbulent viscosity distribution
within the jet

ditions over fixed gradients. Since the values of K are
less able to change, the equations become less nonlin-
ear.

The streamlines in Figure 18 show that the flow
pattern is quite sensitive to these wall conditions. The
high value leads to a small recirculating zone, while

—

(a) (b)

A =1525 F=1537
B =1527 G =1540
C=1530 H =1545
D = 1532 I=1547
E =1535 = 1550

Figure 16. Effect of wall law on temperature distribution.
(a) Wall law set 1. (b) Wall law set 2

the low value yields a larger recirculating region, com-
parable to the predictions of wall law set 1 (Figure 11).
The streamlines computed with wall law set 2 fall be-
tween those two limiting cases. The corresponding ef-
fect on heat flux profiles is even more pronounced.
Figure 19 shows the expected great reduction in heat
flux calculated for the low fixed value of K and ex-
cessively high heat flux for the high fixed value of K.

In conclusion, the boundary conditions on K and €
have an important influence on the simulation. Wall
law 1, which was derived by assuming parallel flow
along the wall, breaks down in regions of recirculation,
attachment, detachment, and impingement, where this
assumption is not valid. Wall law 2, with zero gradient
on K at the wall, appears to be the most accurate
boundary condition to use for the present problem. It
predicts reasonable lower temperatures in the liquid
and matches the heat flux. Although not greatly af-
fecting the velocity prediction, the commonly used wall
law 1 will lead to problems in predicting heat transfer
in most practical systems, which involve recirculation
and stagnation points.
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Figure 17. Effect of wall law on heat flux profile down the nar-
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Figure 18. Effect of altering K boundary condition along inter-
nal wall(s) on streamlines. (a) Low K at wall. (b) Zero K-gradient
at wall. (c) High K at wall
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Figure 19. Effect of altering K boundary condition along inter-
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Turbulent Prandtl number

Conductive heat transfer in the flowing liquid is greatly
enhanced by turbulent eddy transport, which is ac-
counted for in the heat flow model by the turbulent
thermal conductivity, k,, in equations (8)—(10). Since
u, is fixed by the velocity calculations, k, is governed
by the choice of the turbulent Prandtl number, Pr,, used
in equation (10). Thus, a good value for Pr, must be
found.

In the turbulent bulk of the flow, heat and momen-
tum are both transported through the same process
involving the turbulent eddies. Thus similarity has been
found to exist between the eddy momentum and ther-
mal diffusivities, so their ratio, Pr,, is close to 1. This
is Reynold’s analogy and compares favorably with ex-
perimental values between 0.7 and 0.9 for many
fluids.?”-28

Near the wall, however, the relation is not as simple,
and large scatter and sometimes contradictory values
of Pr, have been reported.?® By applying a modified
mixing-length theory to the transport of heat, Cebeci?
obtained the following distribution for Pr, as a function
of distance from the wall, x,:

(-en(2)
(o (2)

At large distances from the wall this yields Pr, =

Pr, = (28)
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Km/k, = 0.9. As the wall is approached, equation (28)
predicts that Pr, increases for liquid metals, which
have low molecular Prandtl numbers, reaching a max-
imum value greater than 10.

In view of its important effect on heat flux to the
wall, the effect of varying Pr, on model predictions was
investigated in two ways: (1) by changing Pr, equally
throughout the domain and (2) by increasing Pr, only
near the wall. Using Boussinesq’s approximation, the
total heat flux from both laminar conduction and tur-
bulent convection is calculated by

aT C,u\ oT
Grotal = keff& = (ko + l;’rl > n (29)

Figure 20 illustrates the effect of turbulent Prandtl
number on the turbulent thermal conductivity near the
wall. Usually, k, is extremely high, exceeding the lam-
inar value of 26 W/mK by more than one order of
magnitude. As was expected, k, drops greatly as Pr,
near the wall is increased, eventually making k, neg-
ligible in relation to ky, which then dominates the heat
flux.

The temperature field is greatly affected by Pr,, as
shown in Figures 21 and 22. As Pr, is increased, ther-
mal diffusion within the liquid is reduced, so heat trav-
els farther with the jet. Figure 21 shows how this steep-
ens the temperature gradients near the wall. The net
result is higher temperature liquid, as is indicated in
Figure 22, which shows the location of the calculated
1537.5°C isotherm for different choices of Pr,. This
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Figure 20. Effect of turbulent Prandtl number on the turbulent
thermal conductivity profile near the narrow face wall (1 m below
meniscus)
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Figure 21. Effect of turbulent Prandtl number on the temper-
ature profile near the narrow face wall (1 m below meniscus)

contour represents the location in the right half-mold,
where the steel jet has lost 50% of its ‘‘superheat,”’
which corresponds to the difference between its initial
and liquidus solidification temperatures. Figure 22(b)
shows that the increase in liquid temperature is most
extreme when a thin 0.01-m strip near the wall has a
large Pr, while elsewhere Pr, remains at 0.9. In these
cases, unrealistically high temperatures are predicted.
This result simply indicates that the thermal boundary
layer, where Pr, is large, is part of laminar region,
which is not simulated in the present model. The value
of Pr, near the wall therefore should not be indepen-
dently altered.

Uneven dissipation of superheat to the shell will
produce a maximum heat input near the point of jet
impingement. This can produce local ‘‘hot spot(s)’’ on
the shell, where growth is slow, and may cause shell
thinning and erosion and even lead to breakouts, par-
ticularly at higher casting speeds.!” Figure 23 shows
that Pr, has its most pronounced effect on heat flux
near this critical impingement point.

Increasing Pr, from 0.9 to 1.5 decreases heat flux at
the impingement point by 20% while heat flux low in
the mold remains unaffected. This is because the in-
crease in temperature gradient low in the mold com-
pensates for the reduction in effective thermal con-
ductivity. Near the impingement point the temperature
gradient is always high and so is less affected by the
overall increase in temperature of the liquid caused by
increasing Pr,. The accompanying reduction in con-
ductivity thus has a greater effect, and lower heat flux
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Table 3. Variation of heat balance with Pr; (All values are in MW/m)

Pr, = 0.7 Pr. = 0.9 Pr. = 1.25 Pr, = 1.50
Heat in —1.269 —1.265 —1.261 —1.260
Heat out, wall 1.221 1.153 1.048 0.984
Heat out, top 0.043 0.043 0.044 0.044
Heat out, centerline —0.009 —0.007 —0.005 —0.004
Heat out, bottom 0.175 0.239 0.335 0.394
Balance 0.161 0.164 0.161 0.158
Deviation, % —=12.7 -13.0 —-12.8 -125

25

Prt = 1.50

Prt wail = 50°

10

(@) (b)

Figure 22. Effect of turbulent Prandtl number on the location
of the 1537.5°C isotherm (representing 50% heat loss). (a) Equal
variation in Pr; throughout domain. (b) Pr¢increased only at wall
(0.9 elsewhere)

is produced. It is interesting to observe in this figure
that increasing Pr, at the wall to 1.5 reduces the heat
flux for a 0.9 Pr, bulk value to almost the same level
as is produced with an overall Pr, of 1.25.

The superheat in the fluid steel can be convected to
and conducted through the solidifying steel shell to the
copper mold walls, or it can be swept out of the mold
region to be dissipated much lower in the caster. Table
3 shows that most of the superheat is dissipated high
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Figure 23. Effect of turbulent Prandtl number on the heat flux
distribution to the narrow face wall

in the caster and that Pr, has a great influence on the
extent to which this happens.

As is seen in Table 3, the heat leaving the bottom
of the domain increases from 0.175 MW/m (14%) to
0.394 MW/m (31%) as Pr, increases from 0.7 to 1.5.
The lower Pr, allows thermal diffusion to take heat out
of the liquid, resulting in more heat leaving the narrow
face, while higher Pr, keeps heat with the jet longer,
decreasing heat flux through the wall and increasing
the average temperature of the steel leaving to lower
regions in the caster. It is also interesting that the heat
balance in Table 3 always calculates over 12% too much
heat flowing out of the system. This difference is larger
than expected from discretization errors alone.

Model verification

Having explored the effect of various modeling param-
eters on the solution, we compared the model predic-
tions with experimental observations to evaluate the
modeling assumptions.
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Velocity predictions

To test the accuracy of the fluid velocity predic-
tions, flow simulations were performed to model the
physical water model at Inland Steel. The results were
then compared with the experimental findings using
the water model. Figure 24 shows a photograph of the
flow pattern in the water model resulting from a nom-
inal 15° downward angled nozzle compared with the
calculated velocities for the same conditions given in
Table 1. The angle and shape of the jet streaming in
from the submerged nozzle, the location of the im-
pingement point on the narrow face wall, and the over-
all flow characteristics observed in this figure show a
general similarity with those observed in the physical
water model. Further details and results are given else-
where.?!

Heat transfer calculations

Measurements of heat transfer in turbulent metal
flow systems are rare. Experimental correlations were
derived for heat flux due to water jet impingement on
a heated flat plate by Kumada and Mabuchi.?! These
correlations were adapted by Nakato!” and validated
to predict heat transfer due to steel jet impingement
within the continuous casting mold. The same proce-
dure was used in the present study to determine heat
flux as a function of position down the narrow face
shell wall:

4(y) = 0.0682 (1 + sin )** Re{"* Pry
ZW o |y B yu'| g k
“\a E_=M) AT,

Ay
CPQJ
This recursive relation is started by calculating heat

where

AT, = AT,_A, — q(y — Ay)

(31

Figure 24. Comparison of measured and calculated velocity
distribution
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Figure 25. Comparison of predicted heat flux distribution with
previous estimates

flux at the jet impingement point from

q,, = 1.42Rel-3¥ Pry+ <Z1>MZé AT (32)
w . o] 0 d d w
where

ATw = Tinter — Tliq (33)

The maximum heat flux at the jet impingement point
on the narrow face predicted by this correlation is al-
most 1.0 MW/m?. This represents a significant fraction
of the total heat flux withdrawn from the other side of
the shell during solidification in the mold. Figure 25
shows that a close match exists all the way down the
mold between the heat flux predicted by this correla-
tion and the finite element simulation, using standard
conditions from Table 1.

This agreement implies that a turbulent Prandtl num-
ber of 0.9 combined with wall law 2 and the other
assumptions made in the present model appear to be
reasonable. The temperatures predicted by the finite
element simulation appear to be slightly high in com-
parison with plant experience, a finding that might be
due to the two-dimensional nature of the calculation.

Conclusions

Finite element simulation of turbulent fluid flow and
heat transfer is a viable tool for modelling and under-
standing flow of liquid metal in metallurgical pro-
cesses. The present study has presented the back-
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ground for development of a turbulent fluid flow and
heat transfer model of liquid steel flow in the mold
region of a continuous slab caster. The model velocity
predictions compare reasonably with visual observa-
tions of flow inside a physical water model, and the
heat transfer results agree closely with calculations
based on experimental correlations. Specific conclu-
sions regarding the modelling procedure are as follows:

e Relaxed successive substitution with a direct solver
is the best convergence strategy for this type of
problem in two dimensions.

e Starting from an initial guess of zero velocity, a high
relaxation factor (0.5-0.7) should be used for the
first few iterations, to quickly reduce the initial er-
ror, followed by further iterations at a lower RF for
increased stability. Following the history of the re-
sidual error is the best indicator of convergence.
When large fluctuations appear in the residual error
history, this indicates that the percent difference
between successive solution vectors is too high and
that the solution is bad.

e The model results are sensitive to values of velocity,
K, and € at the inlet, so the simulation should extend
as far upstream as necessary to simulate the proper
flow conditions entering the domain of interest.

e The error introduced by using upwinding to improve
computational stability is small.

e Significant discrepancy in the flow simulation can
be obtained by improper use of K and € boundary
conditions. For the present problem, involving flow
with recirculation zones and reattachment and stag-
nation regions, wall law 2 produces more realistic
behavior, particularly for heat transfer computation.

e Better computational efficiency (by a wide margin)
is achieved by fixing K and e values at the inlet
(rather than fixing their gradients to zero), although
both methods produced similar results.

e Increasing turbulent Prandtl number significantly in-
creases overall temperatures and decreases heat flux
through its effect of decreasing the turbulent con-
ductivity. Good results were obtained by using the
standard value of 0.9 throughout the computational
domain.

If sufficient care is taken, finite element turbulence
models are capable of reproducing the flow phenomena
observed in a metallurgical system, such as a contin-
uous slab-casting mold. Furthermore, a two-dimen-
sional model can produce adequate velocity results if
the essential flow characteristics of the physical system
are found in the simulated plane.
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Nomenclature

A,., A, Damping factor functions®

C, Specific heat (J/(kg K))

d Diameter of fluid jet, 0.086 m

D Equivalent pipe diameter of caster, 0.352 m
E Wall roughness constant, 9.0

{F} Force vector

Gr Grashoff number

k Thermal conductivity (W/(mK))

K Turbulent kinetic energy (m?/s?)

K] Global stiffness matrix

Pe Peclet number, Pe = Re Pr

Pr Prandtl number = u C,/k

0O; Jet flow rate = pwd?/4Vie,

G Heat flux at impingement point on narrow

face wall (kW/m?)
q(y) Heat flux along narrow face wall (kW/m?)

Re Reynolds number = VDp/u,

Re; Jet Reynolds number = Ve, dp/uo
Re, Grid Reynolds number = V ¢ p/u,
RF Relaxation factor, 0 < RF < 1

{R} Residual vector

Tiset Inlet temperature = 1550°C
Tiiq Liquidus temperature = 1525°C

{U} Solution vector, {v,, v,, K, €, T}

|% Speed (m/s)

v; Velocity component (m/s)

v¥ Friction velocity (m/s)

X Cartesian coordinate distance from center-
line of caster (m)

X Normal distance from edge of computa-
tional domain (m)

X, Offset distance of computational domain
from wall, 0.01 m

y Cartesian coordinate distance below menis-
cus (m)

Voo y-coordinate of impingement point, 0.55 m

Z, Distance between nozzle and impingement
point, 0.67 m

Greek symbols

B Jet angle = 15°

Ay Grid size in y-direction (m)

€ Viscous dissipation (m?/s*)

K von Karman constant, 0.41

Kom Mixing-length constant for momentum, 0.40

K, Mixing-length constant for heat, 0.44

I Viscosity (kg/ms)

p Density (kg/m?3)

ok, 0. Turbulent ‘“‘Prandtl numbers’’ for diffusion
of K and €
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Source term in equations (6)—(8) propor-
tional to generation of K
Element width (m)

Subscripts

molecular (laminar) value

turbulent value

effective value, (sum of laminar and turbu-
lent components)

impingement point
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