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the standing wave [39].  Meniscus balding may be 
prevented by having a slag layer thickness at least the 
size of the standing wave height [37], such as 
predicted from Eq. 6.  Excessive argon flow rates [47] 
can also cause balding, as illustrated in Fig. 14. 
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Figure 10: Balding by Excessive NF Spout 
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Figure 11: Balding by Excessive Argon Flow 
 
Discussion  
Designing and operating a caster to avoid entrainment 
requires careful selection of many different inter-
related parameters, to find a window of stable, 
entrainment-free operation.  Casting conditions must 
be found to simultaneously avoid each of the above 
mechanisms.  The various equations presented here 
can be used together as design tools or to help 
evaluate the results of a numerical or physical model 
of flow in the caster.  In using these equations, it 
should be noted that critical conditions for a given 
mechanism are often exceeded due to asymmetric 
flow conditions, even though symmetric time-averaged 
conditions would have safely avoided entrainment. 
 
There is no single optimum solution.  For example, the 
choice of slag layer properties should balance the 
conflicting needs to use the slag as an inclusion 
catcher (which requires low interfacial tension) with 
preventing shear instability (which requires high 
interfacial tension).  Further work is needed to include 
chemical composition and mass transfer effects at the 
interface [7], which can significantly change the 
interfacial tensions. 
 
Entrainment by vortex formation combined with related 
exacerbating mechanisms is likely the most common 
mechanism of entrainment, owing to the ease at which 
asymmetric flow can occur.  The stability of the 
standing wave, the impinging narrow face spout, and 
bone fide Kelvin-Helmholtz instability are all different 
embodiments of the same mechanism: parallel shear-
layer instability.  Preventing shear instability requires 
control of surface velocity.  Maintaining a safe surface 
velocity requires selection of SEN parameters and 
electromagnetic forces to avoid large meniscus 
fluctuations and shear instability, while keeping the 

meniscus temperatures warm enough to prevent hook 
formation.   
 
Modeling Study 
A modeling study has been performed to further 
investigate the shear-layer instability mechanism of 
entrainment halfway between the SEN and NF mold.  
The theoretical Kelvin-Helmholtz instability (KHI) 
model provides an analytical criterion that was used to 
verify the numerical model used in this study.  
Consider an inviscid molten steel-slag system with uρ  
= 3500 kg/m³, ρ  = 7000 kg/m³, and uΓ   = 1.1 N/m.  
The two-dimensional modeling domain for this 
verification problem was a 0.2×0.4-m rectangle with 
periodic boundary conditions on the vertical edges and 
fixed velocities on the horizontal edges.  The volume 
of fluid (VOF) model was used to treat the multiple 
phases present in the problem, with the continuum 
surface force (CSF) model treating surface tension 
effects.  The domain was initialized with the lower fluid 
at a prescribed velocity, which was varied as part of 
the verification effort, and the upper fluid was initialized 
at rest.  The interface between the two fluids was 
perturbed sinusoidally with amplitude of one cell height 
and a frequency that varied as part of the verification 
effort.  The prescribed horizontal wall velocities 
matched these initial velocities.  The model was 
integrated forward in time with the PISO (pressure-
implicit with splitting of operators) scheme, and the 
results were analyzed for stability.  The results are 
given in Fig. 12, along with the predictions of Eq. 6. 
 

Figure 12: Verification Problem Results 
 
The analytical KHI model predictions are binary: either 
the interface is stable or it is not.  The numerical 
simulations showed degrees of instability, judged by 
whether or not the characteristic Kelvin-Helmholtz 
billows were predicted to form in the simulation and 
how violently the fluids mixed, as described in Fig. 13.  
With proper interpretation, the numerical model is able 
to match the analytical predictions of the conditions for 
an unstable interface. 
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The analytical KHI criterion is far too removed from the 
conditions found in a continuous caster to be of any 
practical use, and so the numerical model was next 
adapted to include a finite slag layer thickness of 10 
mm, a linear temperature gradient through the slag 
layer (causing 650 ºC difference), and temperature-
dependent viscosity in both fluids, as calculated in 
previous work [48].  Fig. 14 shows the temperature-
dependent viscosity profile and Fig. 15 shows the 
viscosity as a function of position through the slag 
layer. 
 

a) “Unstable, strong billow” 

    
b) “Unstable, breaking billow” 

c) “Unstable, no billow” 
Figure 13: Unstable Interface Descriptions 

 

Figure 14: Temperature-Dependent Viscosity of Slag 
 

Figure 15: Viscosity as a Function of Position in Slag 
 
The modeling domain for this case was set up very 
similar to the verification problem, only with a finite 
domain length of 0.1 m with prescribed inlet velocities 
on the left side and pressure outlets on the right side.  
The interface perturbation frequencies were taken as 
25 mm and 25 mm with 30 mm superimposed.  The 
significance of 25 mm is that it is the capillary 
wavelength, the wavelength at which surface tension 
and gravitational effects precisely balance and when 
the analytical KHI criterion takes on its minimum.  The 
idea of superimposing wavelengths is to simulate the 
randomness of turbulent flow found in casters. 
 
The velocity differences investigated were 0.7, 0.9, 
1.0, and 1.1 m/s.  The interfaces in the first three 
cases are described as “unstable, no billow” and in 
fact returned to a stable, quiescent interface because 
of the viscous effects tending to dampen out the drive 
to instability caused by the parallel-flowing shear layer.  
The interface in the case of 1.1 m/s velocity difference 
across is described as “unstable, strong billow,” with 
clear evidence of the occurrence of flux entrainment, 
i.e., particles of molten slag drawn into and carried 
away in the molten steel flow, as illustrated in Fig. 16. 
 

Figure 16: Simulated Mold Flux Entrainment by KHI 
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Note, however, that the interface velocity necessary to 
cause entrainment, rather than just instability, is 1.1 
m/s.  This value is much higher than the 0.3-0.4 m/s 
that is generally observed in casters.  This does not 
imply, however, that this mechanism of entrainment 
can never occur.  Velocities on the order of this have 
been observed in water models that encounter 
asymmetric flow through uneven SEN port discharge 
[49].  Furthermore, the surface tension can be 
drastically reduced in the presence of a chemical 
reaction at the interface, reducing the critical surface 
velocity to ranges that are readily achievable in casters 
with normal flow conditions. 
 
 
Conclusions 
Many studies have been performed over the years to 
investigate mold slag entrainment, which is one of the 
main sources of inclusion defects in continuous 
casting of steel.  This work identifies nine distinct 
mechanisms responsible for entrainment, especially 
vortexing due to asymmetric flow, argon bubble 
interactions with the slag layer, shear-layer instability 
at the slag-steel interface, and excessive upward flow 
impingement on the meniscus.  Other important 
mechanisms include meniscus level fluctuations, 
meniscus freezing and hook formation, and meniscus 
balding.  Standing wave instability appears unlikely as 
shear-layer instability can occur more easily.  The slag 
layer can also crawl down the SEN, which is important 
at shallow submergence depths or with slag foaming.  
The various simple models available in previous 
literature to roughly quantify these nine mechanisms 
are summarized here, and can be used to help 
evaluate the results of computational models of the 
flow field in the molten steel pool.  Predictions are 
further complicated, however, because the different 
mechanisms can act together to aggravate 
entrainment.  Much future work is needed to develop 
better prediction tools for this important problem. 
 
The modeling study to investigate the shear-layer 
instability mechanism was able to successfully match 
the analytical Kelvin-Helmholtz model predictions of an 
unstable interface, and identified that there are varying 
degrees of the concept “unstable” depending on the 
magnitude of the velocity jump across the interface.  
The model was extended to include the effects of 
typical viscosity and temperature gradients through the 
slag layer and found that a surface velocity of 1.1 m/s 
was needed to cause slag entrainment for an 
interfacial tension of 1.1N/m.  Hence, the apparent 
effect of viscosity is to stabilize the interface and 
prevent slag entrainment.  Although this result tends to 
show that this entrainment mechanism is not likely 
during normal casting, the critical surface velocity may 
be exceeded during conditions of asymmetric flow, or 
property changes such as a lower interfacial tension.   
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Note, however, that the interface velocity necessary to 
cause entrainment, rather than just instability, is 1.1 
m/s.  This value is much higher than the 0.3-0.4 m/s 
that is generally observed in casters.  This does not 
imply, however, that this mechanism of entrainment 
can never occur.  Velocities on the order of this have 
been observed in water models that encounter 
asymmetric flow through uneven SEN port discharge 
[49].  Furthermore, the surface tension can be 
drastically reduced in the presence of a chemical 
reaction at the interface, reducing the critical surface 
velocity to ranges that are readily achievable in casters 
with normal flow conditions. 
 
 
Conclusions 
Many studies have been performed over the years to 
investigate mold slag entrainment, which is one of the 
main sources of inclusion defects in continuous 
casting of steel.  This work identifies nine distinct 
mechanisms responsible for entrainment, especially 
vortexing due to asymmetric flow, argon bubble 
interactions with the slag layer, shear-layer instability 
at the slag-steel interface, and excessive upward flow 
impingement on the meniscus.  Other important 
mechanisms include meniscus level fluctuations, 
meniscus freezing and hook formation, and meniscus 
balding.  Standing wave instability appears unlikely as 
shear-layer instability can occur more easily.  The slag 
layer can also crawl down the SEN, which is important 
at shallow submergence depths or with slag foaming.  
The various simple models available in previous 
literature to roughly quantify these nine mechanisms 
are summarized here, and can be used to help 
evaluate the results of computational models of the 
flow field in the molten steel pool.  Predictions are 
further complicated, however, because the different 
mechanisms can act together to aggravate 
entrainment.  Much future work is needed to develop 
better prediction tools for this important problem. 
 
The modeling study to investigate the shear-layer 
instability mechanism was able to successfully match 
the analytical Kelvin-Helmholtz model predictions of an 
unstable interface, and identified that there are varying 
degrees of the concept “unstable” depending on the 
magnitude of the velocity jump across the interface.  
The model was extended to include the effects of 
typical viscosity and temperature gradients through the 
slag layer and found that a surface velocity of 1.1 m/s 
was needed to cause slag entrainment for an 
interfacial tension of 1.1N/m.  Hence, the apparent 
effect of viscosity is to stabilize the interface and 
prevent slag entrainment.  Although this result tends to 
show that this entrainment mechanism is not likely 
during normal casting, the critical surface velocity may 
be exceeded during conditions of asymmetric flow, or 
property changes such as a lower interfacial tension.   
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