Transient Two-phase Flow in a Slide-gate Nozzle and Mold with Double-ruler EMBr

POSTECH: Seong-Mook Cho and Seon-Hyo Kim
UIUC: Brian G. Thomas

Department of Mechanical Science & Engineering
University of Illinois at Urbana-Champaign

Slide-gate and Double-ruler EMBr in Continuous Slab Casting

- Slide-gate produces asymmetric open area for flowing molten steel
- Double-ruler EMBr locates magnet rulers at two regions: just above the port and below nozzle port
Research Scope

- **Previous works**
 - Quantified transient two-phase (molten steel-argon) flow in slide-gate nozzle and mold without EMBr, using LES coupled with DPM model and nail board tests
 - Investigated effects of double-ruler EMBr on single-phase (molten steel) flow in slide-gate nozzle and mold using standard $k-\varepsilon$ model and nail board tests

- **Objectives to**
 - Gain insight of effects of double-ruler EMBr on transient two-phase flow in slide-gate nozzle and mold
 - Develop and validate LES coupled with DPM and MHD to predict two-phase flow considering EMBr effect
 - Compare steady-state standard $k-\varepsilon$ model and LES to predict transient flow variations in the mold

- **Methodologies**
 - Plant Experiments: nail board tests, eddy-current sensor measurements
 - Computational Models: standard $k-\varepsilon$ model, LES coupled with DPM and MHD model

Process Conditions

<table>
<thead>
<tr>
<th>Caster Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzle bore diameter (inner/outer)</td>
</tr>
<tr>
<td>Nozzle bottom well depth</td>
</tr>
<tr>
<td>Nozzle port area</td>
</tr>
</tbody>
</table>
| **Nozzle port angle** | *2008: 52 to 35 down degree step angle at the top, 45 down degree angle at the bottom
*2010: 35 down degree angle at both top and bottom |
| **Mold thickness** | 250 mm |
| **Mold width** | 1300 mm |
| **Domain length** | 4648 mm (mold region: 3000 mm (below mold top)) |

<table>
<thead>
<tr>
<th>Process Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel flow rate</td>
</tr>
<tr>
<td>Casting speed</td>
</tr>
<tr>
<td>Argon gas flow rate & volume fraction</td>
</tr>
<tr>
<td>Submerged depth of nozzle</td>
</tr>
<tr>
<td>Meniscus level below mold top</td>
</tr>
</tbody>
</table>
| **EMBr current (both coils)** | EMBr off: 0 A
EMBr on: 300 A |
Plant Measurements: Nail Board Tests (2013 CCC Report)

- Time-averaged surface velocity: ~50% fluctuation of mean velocity
- Time-averaged surface level: ~8 mm
- Slag motion without EMBr

- AVG level: ~103 mm
- Surface level by time: ~0.03 Hz (~35 sec)
- With EMBr, surface level fluctuation at quarter point (located midway between SEN and NF) is reduced by ~33%: 0.6 mm (Without EMBr) and 0.4 mm (With EMBr)
Governing Equations

- Molten steel flow field: Large Eddy Simulation (LES)

 Mass conservation: \(\frac{\partial}{\partial x_i} (\rho u_i) = S_{\text{shell mass}} \)

 Momentum conservation: \(\frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[(\mu + \mu_t) \frac{\partial u_i}{\partial x_j} \right] + S_{\text{shell mom},i} + S_{\text{Ar mom},i} + F_{L,i} \)

- Argon gas bubble motion: Discrete Phase Model (DPM)

 Bubble motion equation:
 \[
 \frac{d u_i}{d t} = F_{\text{drag}} + F_{\text{umsy}+ \text{y}} + F_{\text{virtual mass}} + F_{\text{pressure gradient}} \]

 Force equations:
 \[
 F_{\text{drag}} = \frac{3}{4} \frac{\mu C_u \Re}{\rho u_i} (u_i - u_{\text{sw}}) \\
 F_{\text{umsy}+ \text{y}} = \frac{1}{2} \frac{\rho u_i}{\rho u_i} \frac{d}{dt} (u_i - u_{\text{sw}}) \\
 F_{\text{virtual mass}} = \frac{\rho}{\rho u_i} \frac{d u_i}{d t} \\
 F_{\text{pressure gradient}} = \frac{\rho}{\rho u_i} \frac{d u_i}{d x_i} \\
 \]

 Drag coefficient:
 \[
 C_u = \begin{cases}
 \frac{16}{Re} & (Re < 0.49) \\
 \frac{20.68}{Re^{0.81}} & (0.49 < Re < 100) \\
 \frac{6.3}{Re^{0.81}} & (100 < Re) \\
 \frac{3}{We^{2/3}} & (2065 < Re) \\
 \frac{2}{3} & (8 < We)
 \end{cases} \\
 \]

- Electromagnetic force induced by EMB: Magneto-Hydro-Dynamics (MHD) model

 Lorentz force: \(\mathbf{f}_L = j \times \mathbf{B} \)

 Induced current density: \(j = \frac{1}{\mu} \nabla \times (\mathbf{B} + \mathbf{h}) \)

 Induced magnetic field: \(\frac{\partial \mathbf{h}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{h} = \frac{1}{\mu_0} \nabla \times \mathbf{B} + (\mathbf{B} + \mathbf{h}) \nabla (\mathbf{u} - \mathbf{v}) \cdot \mathbf{B} \)

Domain, Mesh, and Boundary Conditions

- Half domain (assuming symmetry between NFs, containing the electrically-conducting steel shell region as a solid zone)
- Total cells in the domain: ~1.8 million

<table>
<thead>
<tr>
<th>Boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
</tr>
<tr>
<td>Outlet</td>
</tr>
<tr>
<td>Surface</td>
</tr>
<tr>
<td>Interface</td>
</tr>
</tbody>
</table>
Double-ruler EMBr Field: External Magnetic Field

- Magnetic field applied by the double-ruler EMBr has high peaks in two regions: one centered just above the port and the other below the nozzle port.

Double-ruler EMBr Field: Current Density & Electromagnetic Force

- High current density and electromagnetic force are generated in two regions: near the nozzle port and near the NF 600mm below the mold top.
Comparison of **Time-averaged Mold Flow Pattern** between Standard $k-\varepsilon$ Model and LES (Single Flow)

- Standard $k-\varepsilon$ model and LES both predict double-role flow pattern and high surface velocity in the mold without EMBr.
- Both two models show EMBr produces less flow up the NF (600 mm below mold top), resulting in slower surface velocity and stronger downward flow along the NF.
- In EMBr on case, steady-state standard $k-\varepsilon$ model shows better agreement with LES than EMBr off case.
- The limited accuracy of this steady-state model is perhaps due to complex transient flow variation (anisotropic variations).

Comparison of Mold Flow Fluctuations between Standard $k-\varepsilon$ Model and LES (Single Flow)

- Two models both predict EMBr induces smaller flow variation towards the top surface.
- LES predicts EMBr is more effective to reduce the variations along mold thickness; same trend with R. Singh et al. result.[1]
- Steady-standard $k-\varepsilon$ model well-predicts isotropic variations however, shows limited accuracy for anisotropic variations.

Transient Swirl Flow in Slide-gate Nozzle
(Two-phase Flow)

With EMBr, period of the counter-clockwise swirl flow becomes longer: EMBr makes the flow (from asymmetric open area in the middle plate to nozzle bottom) go down by longer path with imposing electromagnetic force.

<table>
<thead>
<tr>
<th>Period of flow directions</th>
<th>EMBr off</th>
<th>EMBr on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockwise</td>
<td>23.4 s (43%)</td>
<td>14.4 s (23%)</td>
</tr>
<tr>
<td>Counter clockwise</td>
<td>29.4 s (54%)</td>
<td>46.2 s (74%)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.2 s (3%)</td>
<td>1.8 s (3%)</td>
</tr>
</tbody>
</table>

*19.92 s *63.30 s
**13.35 s **42.21 s

*After argon gas injection
**After EMBr application

Swirl Flow Videos

Swirl in nozzle[*] (Water model experiment)

Nozzle Port Velocity Histories
(Two-phase Flow at P1-Nozzle Port)

Jet Velocity Histories
(Two-phase Flow at P2-Jet Flow)

AVG_lag time between P1 and P2 with and without EMBr: ~0.29s
Transient Flow Pattern in the Mold
(Two-phase Flow)

With and without EMBr, double-role pattern is induced in two-phase flow in the mold.
Without EMBr, up-and-down wobbling of the jet flow induces variations of velocity magnitude and direction at the surface, and changes the jet flow impingement point on the NF.
EMBr makes the slightly thinner jet flow and reduces the wobbling, resulting in more stable surface flow.

Mold Flow Videos

Real flow time ~55.2 s
Real flow time ~62.8 s
Velocity Fluctuations & Turbulent Kinetic Energy in the Mold (Two-phase Flow)

- Two-phase flow shows more variations in nozzle port and upper-role region than single-phase flow does.
- EMBr is more effective to reduce the variations produced by the jet flow wobbling in upper-role region; especially, casting direction and mold thickness direction.

Calculation of Jet Flow Angle

- Instantaneous vertical angle: \(\alpha_i = -\tan^{-1}\left(\frac{u_i}{v_i}\right) \)
- Instantaneous horizontal angle: \(\beta_i = -\tan^{-1}\left(\frac{w_i}{v_i}\right) \)
- Averaged vertical angle: \(\alpha_{avg} = \frac{1}{n} \sum_{i=1}^{n} \alpha_i \)
- Averaged horizontal angle: \(\beta_{avg} = \frac{1}{n} \sum_{i=1}^{n} \beta_i \)
- Vertical angle fluctuation (standard deviation): \(\sigma_\alpha = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\alpha_i - \alpha_{avg})^2} \)
- Horizontal angle fluctuation (standard deviation): \(\sigma_\beta = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\beta_i - \beta_{avg})^2} \)

<Instantaneous angle histories of two-phase flow without EMBr (at P1)>
Jet Flow Angle in the Mold (Effect of EMBr on mean and variation)

- Horizontal angle fluctuation is slightly larger than vertical angle fluctuation.

<table>
<thead>
<tr>
<th>Reduction in angle variation by EMBr</th>
<th>P1-nozzle</th>
<th>P2-jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical angle fluctuation</td>
<td>37.4 %</td>
<td>20.9 %</td>
</tr>
<tr>
<td>Horizontal angle fluctuation</td>
<td>28.7 %</td>
<td>8.3 %</td>
</tr>
</tbody>
</table>

“EMBr off”
- EMBr reduces jet wobbling along both casting direction (vertical angle) and mold thickness direction (horizontal angle).

“EMBr on”
- Horizontal angle fluctuation is slightly larger than vertical angle fluctuation.

Transient Surface Flow Pattern (Two-phase Flow)

- Decreased jet wobbling by EMBr reduces the surface flow variations along both mold width and thickness; the horizontal velocity fluctuation and the asymmetric flow between IR and OR are suppressed.

*After argon gas injection
**After EMBr application
Surface Flow Videos

Real flow time ~55.2 s
EMBr off

Real flow time ~62.8 s
EMBr on

Velocity Fluctuations & Turbulent Kinetic Energy
at the Surface (Two-phase Flow)

- EMBr mainly reduces surface velocity fluctuations along mold thickness (between IR and OR) and casting direction; the swirl flow variations produced by slide-gate can be controlled by the EMBr.
Surface Velocity Histories
(Two-phase Flow at W/4 at the surface)

- Variations of surface velocity magnitude is related to the swirl flow direction in the nozzle bottom with slide-gate
- Clockwise swirl induces high momentum jet flow, resulting in high surface velocity after lag time (without EMBR: ~3.4s(avg), with EMBR: ~4.1s(avg)). On the other hand, counter clockwise swirl produces lower surface velocity

Frequency Analysis at the Surface
(W/4 at the surface)

- The characteristic frequencies (EMBr off: ~0.054 Hz, EMBr on: ~0.095 Hz) of surface velocity seem to produce similar peaks as the measured surface level fluctuations
- The strong maximum peak (~0.03 Hz) at the surface, both with and without EMBR, might be produced by low frequency sloshing between right and left narrow face; the half model of LES fails to capture low peak (~0.03 Hz) OR this peak would be shown by longer flow time (over 70 s)
Model Validation with Nail Board Tests: Surface Velocity

- The predicted surface velocity magnitude and its fluctuation profiles show remarkable agreement with measurements for both EMBr off and on case.
- With EMBr, surface flow is slightly slower (by ~17%) with smaller fluctuations (by ~43%).
- This finding suggests that use of the double-ruler EMBr may help to reduce defects caused by surface flow instability.

Model Validation with Nail Board Tests: Surface Level

- The improved pressure-based surface level prediction agrees with measured surface level profiles with and without EMBr.
- Predictions are less accurate near SEN without EMBr; perhaps due to low frequency and high amplitude wave motion near SEN.
- The model might benefit from true free-surface analysis, instead of simple surface-pressure method.
Bubbles Distribution in the Mold
(1/3 Scale Water Model Experiment)

- With higher gas flow rate, bubbles in the mold are larger
- With small gas flow rate, bubbles are carried throughout larger mold region; (because they are small), causing more chance to touch the NF
- With high gas flow rate, most bubbles float to the surface near the SEN (because the flow cannot carry bigger bubbles as easily), so less are found near the NF

Effect of EMBr on Argon Bubble Distribution in the Mold

- Transient gas distribution changes (agrees with measured) are induced by jet flow wobbling.
- Most bubbles found in upper recirculation region; this trend agrees with the water model measurement
- Predicted bubble spreading across top region (differing from measurement) might be due to incorrect assumption of constant bubble size (1mm) vs. (1-5mm with 2.5mm mean)
- With EMBr, more argon bubbles float up to the surface near the SEN wall. In the region 600~1200 mm from the mold top, many bubbles have longer residence time near NF.
Argon Gas Distribution Videos

Real flow time ~55.2 s
Real flow time ~62.8 s

EMBr off

EMBr on

Summary: Modeling

- LES coupled with DPM and MHD model is used to predict transient molten steel-argon flow in slide-gate nozzle and mold with and without EMBr, and the model is validated with nail board tests and eddy-current sensor measurements showing remarkable agreements.
- Steady-standard k – ε model well-predicts isotropic variations, however, shows limited accuracy for anisotropic variations, especially produced by swirl flow near nozzle port.
- Predicted surface velocity magnitude and its fluctuation profiles show remarkable agreement with the measurements for both EMBr off and on case.
- The improved pressure-based surface level prediction (new semi-empirical equation to relate pressure to surface level) agrees with measured surface level profiles with and without EMBr.
- Half model of LES predicts the characteristic frequencies of surface velocity fluctuations, which seem to produce similar peaks as the measured surface level fluctuations. The measured strong peak (~0.03 Hz) by an eddy-current sensor at the surface, both with and without EMBr, might be produced by low frequency sloshing between right and left narrow face; the model fails to capture the low peak (0.03 Hz) OR this peak would be shown by longer flow time (over 70 s).
- LES coupled with DPM shows reasonable match with water model measurements of argon bubble distribution.
- For better prediction of bubble distribution in the mold, bubble size distribution is needed to be implemented to transient two-phase flow model.
Summary: Swirl Flow and Its Effect

- Slide-gate induces swirl flow in nozzle bottom region with clockwise, counter-clockwise, and intermediate directions. EMBr makes the flow (from asymmetric open area in middle plate to nozzle bottom) go down by longer path with imposing electromagnetic force, resulting in longer period of the counter-clockwise flow.
- Swirl flow induces jet wobbling showing high jet flow angle fluctuations (vertical and horizontal angle) in the mold. Both angle fluctuations with EMBr are decreased.
- EMBr decreases jet wobbling, reducing flow variations produced by slide-gate, including variations in thickness direction in both jet & top surface, and along NF (in casting direction).
- **Clockwise swirl** induces high momentum jet flow, resulting in **high surface velocity** after lag time for the jet flow to move toward to surface. On the other hand, counter clockwise swirl produces lower surface velocity.
- Transient gas distribution changes are induced by jet flow wobbling.
- With higher gas flow rate, bubbles in the mold are larger and most bubbles float to the surface near the SEN (because the flow cannot carry bigger bubbles as easily), so less are found near the NF.
- With small gas flow rate, bubbles are carried throughout larger mold region; (because they are small), causing more chance to touch the NF.
- Most bubbles found in upper recirculation region with and without EMBr.
- With EMBr, more argon bubbles float up to the surface near the SEN wall. In the region 600~1200 mm from the mold top, many bubbles have longer residence time near NF. This phenomena may induces more chances for small bubbles to be entrapped by solidifying steel shell (13.5~19.1 mm below slab surface).

Acknowledgments

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, Severstal, SSAB, Tata Steel, ANSYS/ Fluent)
- POSCO (Grant No. 4.0004977.01)
- Yong-Jin Kim, POSCO for help with the plant measurements