Stress Distribution and Crack Formation on Sliding Gate

Hyoung-Jun Lee, Seong-Mook Cho, Seon-Hyo Kim

Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea

Brian G. Thomas

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL, USA, 61801

Sang-Woo Han, Tae-In Jung, Joo Choi

POSCO Technical Research Laboratories, POSCO, Pohang, Kyungbuk 790-785, South Korea
Patterns of Cracks Formed on Sliding Gate Refractory

Service life of sliding gate plate acts as a limiting factor to achieve the expected SEN performance on continuous caster

<table>
<thead>
<tr>
<th>Types of crack</th>
<th>Caused by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside cracks</td>
<td>Thermal expansion</td>
</tr>
<tr>
<td>Longitudinal cracks</td>
<td>Thermal expansion</td>
</tr>
<tr>
<td>Transversal cracks</td>
<td>Plate support load</td>
</tr>
</tbody>
</table>

“Steel and Refractory Chemical Interactions and Mechanical Behavior of Plates for Sliding Gate during Steel Continuous Casting”, V. Munteanu, 2008

Why Cracks are Formed in Sliding Gate

- **Thermal stress** induced by temperature distribution of sliding plate with pre-heating and molten steel temperature

- **High surface pressure** from cassette supporting 3 sliding gate plates

- **Ferro-static pressure** due to height difference between tundish free surface and sliding gate location

- **Friction force** caused by mechanical movements for stabilizing the mold meniscus level
Components of Sliding Gate

- Upper cassette
- Lower cassette
- Upper plate
- Middle plate
- Lower plate
- Steel bend
- Jig
- Bolt

[Schematic of sliding gate parts drawing by Abaqus]
Plate Contacting Geometry with Cassette

<table>
<thead>
<tr>
<th>Plate Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper plate</td>
<td>Cylinder is connected to middle plate via jig. Each plate enclosed by steel bend is fixed by forced clamp.</td>
</tr>
<tr>
<td>Middle plate</td>
<td>Steel bend</td>
</tr>
<tr>
<td>Lower plate</td>
<td>Steel bend</td>
</tr>
</tbody>
</table>

Schematic of sliding gate plates contacting geometry (top view)

- Cylinder is connected to middle plate via jig.
- Each plate enclosed by steel bend is fixed by forced clamp.
Parameters Considered for Computational Modeling

- **Temperature**

 - Pre-heating temp. :
 Sliding gate is heated from room temp. to pre-determined temp.

 - Molten steel temp. :
 Molten steel flows through sliding gate hole, during continuous casting
Parameters Considered for Computational Modeling

- **Load imposed on sliding plate**

 Cassette is loaded by 3.5 ton weight through 4 screws bolted from bottom to top

 \[
 \text{bolt load} : \frac{3500 \text{ kg} \times 9.81 \text{ m/s}^2}{4 \text{ screws}} = 8583.75 \text{ N}
 \]

- **Ferro-static pressure**

 \[
 P_{SG} = \gamma h + P_{atm}
 \]

 "Ferro-static Pressure"

 - \(\gamma\): Specific Weight (kN/m\(^3\))
 - \(h\): Molten Steel Depth (m)
 - \(\rho\): Density (kg/m\(^3\))
 - \(g\): Gravitational Acceleration (m/s\(^2\))

 \[
 \gamma h = \rho gh = 7020 \text{ kg/m}^3 \times 9.81 \text{ m/s}^2 \times 1.8 \text{ m} = 123959.16 \text{ kg/m} \cdot \text{s}^2 \cdot \text{m} = 123959.16 \text{ N/m}^2 = 123959 \text{ Pa}
 \]

 \[
 P_{atm} = 101325 \text{ Pa}
 \]

 \[
 P_{SG} = 123959 \text{ Pa} + 101325 \text{ Pa} = 225284 \text{ Pa}
 \]
Parameters Considered for Computational Modeling

- Mechanical movement (Friction force)

Cylinder is working back and forth to stabilize the mold meniscus level with velocity of approx. 0.025 m/s

![Diagram showing mechanical movement and components]
Future Plan

- **Stress distribution** will be investigated considering 5 different parameters on sliding gate plates with different opening ratio

- **Crack Initiation and propagation** will be investigated

- **How stresses are affected on plates depending on different pre-heating temperature** will be considered
Acknowledgements

- Continuous Casting Consortium Members (ABB, Arcelor-Mittal, Baosteel, Corus, LWB Refractories, Nucor Steel, Nippon Steel, Postech, Posco, ANSYS-Fluent)

- POSCO : Jong-Tae Ahn, Duck-hee Lee

- POSTECH : Soo-Hyun Joo