

Stress and Hot Tearing of Solidifying Steel Shells: Experiment and Simulation

Matthew Rowan (Ph. D. Student)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Background

Stress develops in solidifying shell due to:

- 1) Thermal loading
- 2) Mechanical loading
- Phenomena:
 - Thermal contraction
 - Phase transformation
 - Temperature gradients
 - Steel strength
 - Interface friction
- Leads to Cracks
 - Internal hot tears
 - Surface cracks

Bernhard C.: Anforderungen an prozessorientierte Heißrissbildungsmodelle BHM, Vol. 149 (2004), 90-95.

SSCC Experimental Apparatus

SSCC Test

Images courtesy of R. Pierer

University of Illinois at Urbana-Champaign · Metals Processing Simulation Lab · M Rowan 9

Removed Solidified Shell

.

.

Images courtesy of R. Pierer

Experimental Data

asting

Experiments performed at University of Leoben Temperature [°C] Thermocouple measurements L $L+\delta$ - 2 locations in the test cylinder - 2 locations in the steel melt $L + \gamma$ $\delta + \gamma$ Contraction Force ٠ 0.09 0.16 C wt.-% Contraction [1/°C] 1.85E-05 Shell Thickness Thermal 10 oC below Solidus 1.75E-05 20 oC below Solidus Alloying effect important 1.65E-05 - C, Si, Mn, P, S, Ni 11 University of Illinois at Urbana-Champaign Metals Processing Simulation Lab M Rowan

Experimental Steel Compositions

Steel No.	C (Wt %)	Si (Wt %)	Mn (Wt %	6) P (Wt %) S(Wt %)	Ni (Wt %)	C _p (Wt %)
1	0.05	0.29	1.52	0.012	0.004	0.017	0.07
2	0.07	0.27	1.51	0.012	0.004	0.017	0.09
3	0.09	0.29	1.55	0.011	0.008	0.026	0.12
4	0.13	0.31	1.57	0.014	0.004	0.017	0.15
5	0.15	0.28	1.56	0.014	0.005	0.018	0.17
6	0.20	0.27	1.75	0.014	0.005	0.020	0.23

nuous

Metals Processing Simulation Lab

M Rowan 13

Thermo-mechanical Analysis

- Solve 2-D axisymmetric transient heat conduction equation and elastic-viscoplastic stress analysis
- Temperature and phase-dependent
 - thermal conductivity
 - specific heat
 - coefficient of thermal expansion
 - elastic modulus
- Implement Kozlowski III and modified power law constitutive relations into ABAQUS using Koric UMAT routine*
 * Koric, S, Thomas, B. G., "Efficient thermo-mechanical model for solidification

* Koric, S, Thomas, B. G., "Efficient thermo-mechanical model for solidification processes", *International Journal for Numerical Methods in Engineering, Vol.* 66 (12), 2006, pp. 1955-1989.

Phase Fractions

Steel Property Equations

Temperature-dependent properties: k and H [Pehlke, 1982],

E [Mizukami,1977], Ωt [Pehlke,1982, Harste,1988 for solid, Cramb, 1993 for liquid].

Elastic-viscoplastic model for Austenite (Kozlowski)

 $\dot{\varepsilon}(1/\text{sec.}) = f(\%C) \Big[\sigma(MPa) - f_i (T(°K)) \varepsilon |\varepsilon|^{f_i (T(°K)) - 1} \Big]^{f_i (T(°K))} \exp(-4.465 \times 10^4 (°K) / T(°K)) \\f_i (T(°K)) = 130.5 - 5.128 \times 10^{-3} T(°K) \\f_2 (T(°K)) = -0.6289 + 1.114 \times 10^{-3} T(°K) \\f_3 (T(°K)) = 8.132 - 1.54 \times 10^{-3} T(°K) \\f(\%C) = 4.655 \times 10^4 + 7.14 \times 10^4 \% C + 1.2 \times 10^5 (\%C)^2$

Modified Power Law Model for δ -ferrite (Zhu)

```
\dot{\varepsilon} (1/\sec.) = 0.1 \left| \sigma (MPa) \right| f (\% C) (T (°K) / 300)^{-5.52} (1+1000\varepsilon)^{m} \right|^{n}
f (\% C) = 1.3678 \times 10^{4} (\% C)^{-5.56 \times 10^{-2}}
m = -9.4156 \times 10^{-5} T (°K) + 0.3495
n = 1 / 1.617 \times 10^{-4} T (°K) - 0.06166
```


Casting Consortium

Temperature", Met. Trans. A, Vol. 23A, 1992, pp. 903-918.

Comparison with Analytical Solution

Property/Condition	Value		
Density	7500.0	kg/m ³	
Specific heat	661.0	J/(kg⋅K)	
Latent heat	272.0	kJ/kg	
Thermal conductivity	33.0	W/(m·K)	
Thermal expansion coefficient	20.0E-6	m/(m·⁰C)	
Poisson's ratio	0.3	_	
Initial temperature	1495.0	°C	
Liquidus temperature	1494.48	°C	
Solidus temperature	1494.38	°C	
Mold temperature	1000.0	°C	
Yield stress at mold temp.	20.0	MPa	
Yield stress in liquid material	35.0	kPa	
Elastic modulus in solid	40.0	GPa	
Elastic modulus in liquid	14.0	GPa	

Courtesy of L. Hibbeler

J.H. Weiner and B.A. Boley, "Elasto-Plastic Thermal Stresses in a Solidifying Body." *Journal of the Mechanics and Physics of Solids*, 11 (1963), No. 3. pg 145-154.

.

Calculation of Critical Strain – Steel 2

$$\varepsilon_{crit} = \frac{0.02821}{\dot{\varepsilon}^{0.3131} \Delta T_B^{0.8638}}$$

- Equation fit over large range of strain rates and cooling rates
 - (5 90 x 10 -4 1/sec)
- ΔT_B = Brittle temperature difference
 - Temperature difference between 90% and 99% solid fraction
- Strain rate found from simulation

* Won, MY, Yeo, TJ, Seol, DJ and Oh, KH, "A New Criterion for Internal Crack Formation in Continuously Cast Steels", *Met. Trans. B*, Vol. 31B, 2000, pp. 779-94

inuous Casting Consortium

Won's Criteria is Time/Space Dependant

Steel 2 Crack Formation

Phase: Solid, 100 % δ -ferrite Mode: Starts at surface (5.3 [sec]), stops growing at 8.3 [sec].

Steel 2 Hot Tear Formation

Crack is similar location and length, but oriented differently. Solution: Enhance coupling of temperature and displacement.

Good Agreement – Hot Tears

Elastic-viscoplastic constitutive model utilizing separate austenite and delta-ferrite equations appears reasonable.

Conclusions

Defects are predicted in regions of high surface temperature with local strain concentration. The model is capable of differentiating hot tears from cracks.

This work is a first step to combine experiments and models to develop criteria for predicting cracks and hot tears in solidifying steel

University of Illinois at Urbana-Champaign

Future Work

Metals Processing Simulation Lab

Enhance temperature-displacement coupling.

Develop constitutive model that matches experimental force curve.

Perform simulations for more steel grades.

45

M Rowan

Acknowledgments

Continuous Casting Consortium (UIUC) Christian Doppler Laboratory (Univ. Leoben) Lance Hibbeler, Seid Koric

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

M Rowan 47