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Funnel Mold Terminology and 
Nominal DimensionsNominal Dimensions

Strand Width = 1200 mm (47.2”) (Variable)
Centerline Slice

Mold Wide Face

Funnel Crown = 23.4 mm (0.92”) top, 8 mm (0.32”) bottom

F
unnel L

M
old

Outer Funnel Width = 750 mm (29.4”)

Inner Funnel Width = 260 mm (10.2”)
Mold Narrow Face Mold Narrow Face

ength =
 850 

d Length =
 11 m

m
 (33.5”)

100 m
m

 (43.3

Strand Thickness = 90 mm                  
.                            (3.5”)

Funnel Opening = 136.8 mm        (5.4”)

Outer InnerOuter Inner Inner Outer Outer

Mold Wide Face

3”)
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Longitudinal Facial Cracking

100 mm
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I IIIII IV V

Plant Experience I

• Inside curve region

Plant Experience III

• Short jagged cracks form all around perimeter

I IIIII IV V

• Inside curve region

• Long cracks in root of depression

• Caused about 60% of breakouts

Plant Experience II

• Short, jagged cracks form all around perimeter

• Heat transfer related

Plant Experience IV

• Occur around SEN- fluid flow problems
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Plant Experience II

• Outside curve region

• Long cracks in root of depression

Occur around SEN fluid flow problems

Plant Experience V

• Off-corner on wide face- insufficient taper



Plant Experience I:
LFC Breakout Locations
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LFC Breakout Locations
Data provided by A. Kamperman of Corus
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Distance from Center (mm)

Each interval is 10 mm. Shows the locations of depression-type LFC’s that caused breakouts

Longitudinal Facial Cracking: 
Depression Mechanism (Type I,II)

• Root cause is non-uniform heat transfer
• Initiate nonuniformity (shell depression)

Depression Mechanism (Type I,II)

Initiate nonuniformity (shell depression)
– Variations in slag rim thickness at meniscus
– Gap from necking (self-correcting)
– Gap from buckling (self-amplifying)Gap from buckling (self amplifying)

• Depression causes:
– Lower heat flux

Hi h h ll t t
Amplifies
if b kli

M
o

ld
 W

M
o

ld
 W

– Higher shell temperature
– Thinner shell
– Grain growth (larger grains)

M b ittl b h i

if buckling

W
all

W
all

– More brittle behavior
– Stress and strain concentrations

• Tensile inelastic strain exceeds critical 

Combination 
causes cracks
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value  cracks form



Numerical Model

• Coupled thermal-stress analysis with ABAQUS
– Transient solidification heat transfer in a moving 2D sliceTransient solidification heat transfer in a moving 2D slice 
– Special two-level integration scheme for elastic-viscoplastic 

mechanical behavior (implemented with a UMAT user subroutine)

• Thermal analysis: H∂Thermal analysis:
– Standard Fourier heat conduction with solidification
– Temperature-dependent thermal conductivity and specific heat

• Mechanical analysis:

( )H
T

t
ρ ∂ = ∇ ⋅ ⋅∇

∂
k

• Mechanical analysis:
– Standard mechanical (static) equilibrium, small strains
– Temperature- and phase- (L, δ, γ) dependent constitutive behavior

T d d l i d l d h l i

0∇ ⋅ + =σ b

– Temperature-dependent elastic modulus and thermal expansion
– “Softened” exponential pressure-overclosure contact relationship
– Interfacial friction factor of µ = 0.16 [Meng et al., CMQ 45-1 pg. 79-94]
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– Ferrostatic pressure

• 2D model includes the funnel shape and mold oscillations
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Percent Weight Carbon

[Won and Thomas, MTB, 2001]

Temperature ( C)



Constitutive Equations

• Austenite (Kozlowski model III):
( ) ( ) ( ) ( ) ( ) ( )3

2

4
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• δ-ferrite (Zhu modified power law):
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• Liquid and mushy zone:
– Treat as low yield stress, low elastic 

modulus perfectly plastic solid

0 1 2 3 4 5 6 7 8 9 10

Strain (%)

• P.F. Kozlowski, B.G. Thomas, J.A. Azzi, and H. Wang, “Simple Constitutive 
Equations for Steel at High Temperature.” Metallurgical and Materials 
T ti 23A (1992) N 3 903 918
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modulus, perfectly-plastic solid

T in Kelvin, σ in MPa, C in weight % C

Transactions, 23A (1992), No. 3, pg. 903-918.

• H. Zhu, “Coupled Thermo-Mechanical Finite-Element Model with Application 
to Initial Solidification.” Ph.D. Thesis, University of Illinois at Urbana-
Champaign, (1996).

Evaluation of Kozlowski Model
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Kozlowski Model is generally accurate, except for:

• Low stress, high strain

±10%: 46% of data

±20%: 75% of data
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• High stress, low strain



Traveling Slice Analysis
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Finite Element Mesh

Solidifying Steel Computational DomainSolidifying Steel

Mold

Computational Domain

Near inside of 
funnel

Corner

• Standard 4-node heat transfer elements

• Hybrid formulation of generalized plane 
strain mechanical elements
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strain mechanical elements

• Fixed mesh, about 60000 nodes



Process Parameters

Casting speed 5.5 m/min

Carbon content 0.045 %wt

217 ipm

Pour temperature 1545.0 ºC

Strand width 1200 mm

2813 ºF

47”Strand width 1200 mm

Narrow face taper 1.0 %/m

47

Meniscus depth 104.2 mm

Time in mold 10.86 s

4”
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Heat Flux Profiles:
Interfacial Thermal Boundary ConditionInterfacial Thermal Boundary Condition

• Heat flux uniformly applied around 
most of the perimeter
D h t fl t t

8
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• Decrease heat flux at corner to 
account for gap formation
(linear drop to 50% over 20 mm)
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[Santillana et al., AISTech 2007]



Ferrostatic Pressure and Mold Wall Movement:
Mechanical Boundary Conditionsy
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Hot Face DisplacementFerrostatic Pressure

Model Verification:
Properties, Parameters, and Boundary Conditionsp y

Insulated ed

Thermal Boundary Conditions
• J.H. Weiner and B.A. Boley, “Elasto-Plastic Thermal Stresses 

in a Solidifying Body.” Journal of the Mechanics and Physics of 
Solids, 11 (1963), No. 3. pg 145-154.

Property/Condition Value

Density 7500.0 kg/m3

Specific heat 661.0 J/(kg·ºC) Prescribed temperature
or heat flux

Insulated

Insulated In
su

la
te

Latent heat 272.0 kJ/kg

Thermal conductivity 33.0 W/(m·ºC)

Thermal expansion coefficient 20.0E-6 m/(m·ºC)

Poisson’s ratio 0 3 F
re

eZero perpendicular displacement

Mechanical Boundary Conditions

Poisson s ratio 0.3 --

Initial temperature 1495.0 ºC

Liquidus temperature 1494.48 ºC

Solidus temperature 1494.38 ºC

S
tr

es
s-

F

Equal perpendicular displacement

Zero perpendicular 
di l t

Solidus temperature 1494.38 C

Mold temperature 1000.0 ºC

Yield stress at mold temp. 20.0 MPa

Yield stress in liquid material 35.0 kPa
Domain

Solid material
displacement
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Elastic modulus in solid 40.0 GPa

Elastic modulus in liquid 14.0 GPa
Liquid material



Model Verification:
Temperature SolutionTemperature Solution

1400

1450

1500

1200

1250

1300

1350

m
p

er
at

u
re

 (
ºC

)

1050

1100

1150

1200

T
em

Analytical

Numerical

2 s
10 s
30 s

1000

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

Distance From Shell Surface (mm)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler • 17

Model Verification:
Stress SolutionStress Solution
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Temperature Results

Slight two-dimensional heat transfer in 
funnel transition region

Inner Curve Outer CurveInner Curve Outer Curve

SolidusSolidus

9.6 mm
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t = 10.86 s (mold exit)
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Stress Profiles and Histories
Through Thickness in Flat RegionsThrough Thickness in Flat Regions
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• By mold exit, only the first 2 mm of 
the shell are in compression

-12
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1.5 mm = 0.06”

Surface Stress Around Perimeter:
Effect of Funnel Width
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Stress Near Solidification Front:
Effect of Funnel Width
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Funnel Bending Effect

• A unique attribute of funnel molds is that the steel 
h ll i i ifi tl b t it lid d th ldshell is significantly bent as it slides down the mold

Tension

Compression

Compression

Tension
Compression

• Beam theory from solid mechanics can elucidate the 
important parameters in the phenomenon

y

x
2·h

This end pinned, u = 0
M

εmax, compressive

εmax, tensile

x

y

R
ε = −
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w

εmax, compressive R

[R.C. Hibbeler, Mechanics of Materials, 5e, 2003]



Analytical Bending Model:
Comparison with Numerical ModelComparison with Numerical Model

• Take the difference 
between bending a beam to Time Below Meniscus (s)between bending a beam to 
the funnel radius at the 
meniscus and the funnel 
radius at some other depth:
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model with the thermal 
effects subtracted

Bending Strain on Solidification Front

Analytical Bending Model
Larger total funnel width = Larger radius = Lower bending strain and strain rate

Shallower funnel = Larger radius = Lower bending strain and strain rate
Longer Funnel = Increases strain near bottom of funnel (larger radius for more time), but lowers strain rate
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Subsurface Hot Tears

• Typical solidification stresses put tension on the 
solidification frontsolidification front
– Tension increased by bending effect in inner curve 

region, thus higher risk of hot tearingg g g

• Critical hot tearing strain quantified by Won:
0.02821=ε Won et al Metall Mat Trans 31B:4 (2000) pg 779

• Brittle temperature zone (BTZ):

0.3131 0.8638=
⋅Δc

BT
ε

ε
Won et al., Metall. Mat. Trans., 31B:4 (2000), pg. 779

• Average inelastic strain rate in BTZ:

( 99%) ( 90%)B s sT T f T fΔ = = − =
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( 99%) ( 90%)
( 99%) ( 90%)

s s

s s

f f

t f t f

ε εε = − ==
= − =



Subsurface Hot Tears

• Extremely fine mesh required to apply Won model 
(0 06 mm element size is insufficient)(0.06 mm element size is insufficient)
– Use 1D numerical model to calculate temperatures and 

inelastic strain profile history in flat regions of moldp y g

– Add bending effect with analytical model

• Low-carbon steels exhibit strong numerical noise
– Use a higher carbon grade (0.07%C) to reduce effect

– High-carbon grades are also more crack-sensitive

• Define “damage index” as ratio of actual damage 
strain to critical damage strain (crack forms at unity)
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Subsurface Hot Tears

• No hot tears will form 
under normal operation 0.20
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Pushing the Shell

• As the crown decreases, the steel shell is pushed 
i d t th SEN d t d t th finward to the SEN and outward to the narrow faces
– Opposed by friction and excessive narrow-face taper 

Affected by solidification shrinkage (possibly– Affected by solidification shrinkage (possibly 
compensating)

– Most noticeable at early times before opposing effects y pp g
are strong, but always present

D i O d b f i tiDecreasing crown

Shell pushed “uphill”

Opposed by friction
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Shell pushed uphill  
by funnel



Interfacial Gaps

• Predicted gaps are mechanical effects, due to no coupling of mechanical 
model to heat transfer model (coupled model would have larger gaps)model to heat transfer model (coupled model would have larger gaps)

• Small gaps in the inner curve region
– “Shell pushing” encourages good contact

• Larger gaps in the outer curve region
T

C

T• Larger gaps in the outer curve region
– Shrinkage from outer flat region is resisted by “shell pushing”

• Both influenced by bending effect

Sh i k i “ hi ” t h i th iddl f th f l

C
T

• Shrinkage minus “pushing” meets somewhere in the middle of the funnel
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Depression Mechanisms
• Inside curve:

– Friction + bending pins the shell at the transition points
M ld i d b kli if l l h ll h i k i t h t t h th– Mold may induce buckling if local shell shrinkage is not enough to match the 
mold perimeter length change

• Outside Curve 1

2

3

• Outside Curve
– Friction + bending pins the shell at the inside/outside curve transition point
– Excessive NF taper causes the shell to lift off the mold surface, reducing 

heat transfer

1

– Bending (funnel and ferrostatic pressure) causes tensile stress on surface, 
leads to necking
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Tangential Displacement

• Project the incremental displacement vector 
onto a vector tangent to the mold surfaceonto a vector tangent to the mold surface
– Neglects the “global” mold displacement, but 

includes the effects of the shell sliding around theincludes the effects of the shell sliding around the 
funnel “corners”

Shell
ux

uyu

t
y

Mold
x t

u’
x
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Surface Displacement:
Effect of Funnel Width
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Surface Trajectories

• Put markers at the 
meniscus that draw a 
line on the mold as they
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Surface Trajectories

• Inside curve trajectories 
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initial movement 
towards the narrow face

• Large gap at 
inside/outside transition
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Conclusions
• A larger funnel radius provides:

– More uniform heat transfer
– Smaller bending effect in the transition region
– Lower tendency to form subsurface hot tears

• A “better” funnel (with respect to depression type• A better funnel (with respect to depression-type 
LFCs) has a wide funnel and small crown

D

Increase outer 
funnel widthDecrease crown funnel width

• Depression-related LFCs are also affected by 
f i ti d f t

Decrease inner 
funnel width
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friction, and narrow-face taper
• Many other phenomena can cause LFCs
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