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Overview
• Cononline Overview

– Consensor: “software sensor”
– Concontroller: PI controller bank
– Monitor

• Controller performance comparison

• Future research
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Project Motivation: Approaches to 
Cooling Spray Control

1) Manual control:
– Operator sets of water flow rates
– Difficult at high casting speeds when response times must be 

short

2) Casting-speed-based control:
– Set water flow rates according to casting speed
– Results in non-optimal cooling during transient conditions

3) Conventional feedback control:
– Limited measurement opportunities
– Pyrometers etc. can be unreliable in spray zones

4) Software-sensor-based control:
– Create “software sensor,” an accurate, real-time computational 

model to base control on
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Computer Architecture
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Consensor Overview: CON1D

• Fundamentally based 
transient finite-
difference model:

• CON1D predicts:
– shell thickness
– temperature distribution
– heat flux profiles

• Suitable for real-time 
model
– Can simulate entire 

caster in < 1 second
– “Restart mode”: Can stop 

simulation at arbitrary 
point, continue later
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Consensor Overview

• Multiple “slices”
– Each second, simulate 

each slice for 1 second
– 200 slice simulation for 1 

second each takes ~ 
same time as 1 slice 
through entire caster: < 
0.5 seconds

• Consensor
– stores and manages 200 

CON1D slices
– Interpolates between 

slices to estimate full 
shell & temperature 
profile
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Concontroller Overview:
Spray Zones
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Concontroller Overview
• Zone-based PI control: 10 individual PI 

controllers, one for each spray zone

• Controller Algorithm: At each second of time:
1. Obtain surface temperature profile from CONONLINE. 
2. For all 10 zones: 

i. Compute the zone-based average surface temperature error 
for current zone: 

ii. Use Terr to compute the water flow rate command:

3. Send all water flow rate commands to Consensor, 
caster automation, and Monitor
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Setpoint Methodologies

1. Speed-based spray 
flow setpoints – current 
Nucor spray practices

2. Temperature setpoints
(zone-averages) based 
on steady states for 
flows in (1)

3. Vary (2) based on 
casting conditions
• Casting speed
• Mold exit temperature 

(mold heat flux, 
superheat)

4. Operator chosen 
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Monitor Overview:
Profile Screen
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Monitor Overview:
Parameter Screen
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Monitor Overview
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Ongoing work on Cononline

• Adding new features to Monitor (for plant 
operation)
– “Passive” mode that displays without allowing 

changes to setpoints
– Automatic resize window from 1024x768 up
– Options (servers, mode) set in configuration file

• Changing to production versions of software
– Programs run as Linux “daemons”
– Program log files can be used for debugging

• Fixing stability issues
• Multi-threading Consensor for faster running
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Controller Performance 
Comparison

• Based on caster data recorded at Nucor Decatur
– thanks to Terri Morris, Rob Oldroyd, and Alan Hable

• Simulations run in real-time at UIUC
– HP servers, Intel Xeon processors

• Test situation: sudden slowdown
– Casting speed drops from 3.0 m/min to 2.5 m/min 30 

seconds into simulation
• Comparing four different control methodologies

– No control (constant spray rates)
– Spray-table based control
– PI control with speed-based setpoints
– PI control with mold-exit-temperature-based setpoints

(“fixed setpoints”)
• All videos are recorded at 6x playback speed

University of Illinois at Urbana-Champaign         • Metals Processing Simulation Lab • Bryan Petrus, BG Thomas, & Joseph Bentsman 16

No Control (fixed spray rates)
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Spray table control
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PI Control: speed-based 
setpoints
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PI Control: fixed setpoints
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Controller Performance 
Comparison

• Spray-table control displays 
temperature overshoot during 
slowdown

• PI control with speed-varying 
setpoints reacts quickly at all points 
throughout caster

• PI control with fixed setpoints reduces 
sprays more gradually in zones 
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Future Research: Advanced 
Control Development

• Surface temperature control 
does not guarantee 
metallurgical length control

– Develop control algorithm for 
centerline temperature

– Switch between objectives?
• solidification front (prevent 

whales)
• surface temperature (steel 

quality)?

• New NSF grant: “Hybrid Control 
of Continuous Casting for 
Whale and Crack Prevention”

– Closed-loop measurements are 
very spatially localized 
(discrete)

• Mold heat removal rate
• Pyrometer readings

– Need temperatures between 
measurements (continuous)
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Future Research: Model 
Development

• Make model robust to casting conditions 
and data errors

• Improve accuracy of model by adding 
physical behavior
– More accurate heat transfer coefficients 

(Sami, Xiaoxu’s research)
– Possible hysteresis effects during spray 

changes
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Thank you!

• Continuous Casting Consortium Members
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– GOALI DMI 05-00453 (Completed July 29, 2009)
– GOALI CMMI-0900138 (Received July 14, 2009)

• Other CCC grad students
– Sami Vapalahti, Xiaoxu Zhou


