Overview

- Cononline Overview
 - Consensor: “software sensor”
 - Concontroller: PI controller bank
 - Monitor

- Controller performance comparison
- Future research
Project Motivation: Approaches to Cooling Spray Control

1) **Manual control:**
 - Operator sets of water flow rates
 - Difficult at high casting speeds when response times must be short

2) **Casting-speed-based control:**
 - Set water flow rates according to casting speed
 - Results in non-optimal cooling during transient conditions

3) **Conventional feedback control:**
 - Limited measurement opportunities
 - Pyrometers etc. can be unreliable in spray zones

4) **Software-sensor-based control:**
 - Create “software sensor,” an accurate, real-time computational model to base control on

Overview

- **Setpoint options**
- **Human-Machine Interface**
- **Setpoint Generator**
- **MAN/MACHINE SUPERVISORY LOOP**
- **Controller**
 - Separate PID controller for each spray zone
- **Automatic Control Loop**
 - Shell thickness and surface temperature estimation
- **Controller**
 - 2-D transient thermal model (200 moving 1-D slices)
 - \(\rho c_p \frac{dT}{dt} + \frac{\partial}{\partial x} (k \frac{dT}{dx}) \)
- **Software Sensor**
- **Caster**
- **Surface temperature setpoint**
- **Spray water flow rates**
- **Caster data**
Computer Architecture

Windows Computers

CononlineMonitor

Caster Automation

Current control logic

CommClient

Controller Computer

(Slackware Linux)

ActiveXServer

CommServer

CONCONTROLLE

shared memory

CommServer

Model Computer

(CentOS Linux)

CommClient

CONSENSOR

Legend:

TCP/IP connection

Shared memory connection

Consensor Overview: CON1D

• Fundamentally based transient finite-difference model:

\[\rho \cdot C_p \cdot \frac{\partial T}{\partial t} = k \cdot \frac{\partial^2 T}{\partial x^2} + \frac{\partial}{\partial T} \left(\frac{\partial T}{\partial x} \right)^2 \]

• CON1D predicts:
 – shell thickness
 – temperature distribution
 – heat flux profiles

• Suitable for real-time model
 – Can simulate entire caster in < 1 second
 – "Restart mode": Can stop simulation at arbitrary point, continue later
Consensor Overview

- Multiple “slices”
 - Each second, simulate each slice for 1 second
 - 200 slice simulation for 1 second each takes ~ same time as 1 slice through entire caster: < 0.5 seconds

- Consensor
 - stores and manages 200 CON1D slices
 - Interpolates between slices to estimate full shell & temperature profile

Concontroller Overview: Spray Zones

- Zone 1
- Zone 2
- Zone 3
- Zone 4
- Zone 5 (Inner/Outer)
- Zone 6 (Inner/Outer)
- Zone 7 (Inner/Outer)

4 x 1 + 3 x 2 = 10 controllers
Concontroller Overview

- Zone-based PI control: 10 individual PI controllers, one for each spray zone

- **Controller Algorithm**: At each second of time:
 1. Obtain surface temperature profile from CONONLINE.
 2. For all 10 zones:
 i. Compute the zone-based average surface temperature error for current zone:
 \[\Delta T_j(t) = \frac{\int T'(z,t) - \tilde{T}(z,t) \, dz}{L_j} \]
 ii. Use \(T_{err} \) to compute the water flow rate command:
 \[u_j(t) = k_j \Delta T_j(t) + \int k_j \Delta T_j(t) \, dt \]
 3. Send all water flow rate commands to Consensor, caster automation, and Monitor

Setpoint Methodologies

1. Speed-based spray flow setpoints – current Nucor spray practices
2. Temperature setpoints (zone-averages) based on steady states for flows in (1)
3. Vary (2) based on casting conditions
 - Casting speed
 - Mold exit temperature (mold heat flux, superheat)
4. Operator chosen

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Pattern 1</th>
<th>Pattern 2</th>
<th>Pattern 3</th>
<th>Pattern 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i/min)</td>
<td>(i/min)</td>
<td>(i/min)</td>
<td>(i/min)</td>
</tr>
<tr>
<td></td>
<td>(gal/min)</td>
<td>(gal/min)</td>
<td>(gal/min)</td>
<td>(gal/min)</td>
</tr>
<tr>
<td>Zone 1, Speed 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zone 1, Flow Rate 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zone 1, Speed 2</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
</tr>
<tr>
<td>Zone 1, Flow Rate 2</td>
<td>26</td>
<td>24</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Zone 1, Speed 3</td>
<td>31.5</td>
<td>31.5</td>
<td>31.5</td>
<td>31.5</td>
</tr>
<tr>
<td>Zone 1, Flow Rate 3</td>
<td>26</td>
<td>24</td>
<td>26</td>
<td>23</td>
</tr>
</tbody>
</table>
Monitor Overview: Profile Screen

![Profile Screen Diagram](image1)

Monitor Overview: Parameter Screen

![Parameter Screen Diagram](image2)
Ongoing work on Cononline

- Adding new features to Monitor (for plant operation)
 - “Passive” mode that displays without allowing changes to setpoints
 - Automatic resize window from 1024x768 up
 - Options (servers, mode) set in configuration file
- Changing to production versions of software
 - Programs run as Linux “daemons”
 - Program log files can be used for debugging
- Fixing stability issues
- Multi-threading Consensor for faster running
Controller Performance Comparison

- Based on caster data recorded at Nucor Decatur
 - thanks to Terri Morris, Rob Oldroyd, and Alan Hable
- Simulations run in real-time at UIUC
 - HP servers, Intel Xeon processors
- Test situation: sudden slowdown
 - Casting speed drops from 3.0 m/min to 2.5 m/min 30 seconds into simulation
- Comparing four different control methodologies
 - No control (constant spray rates)
 - Spray-table based control
 - PI control with speed-based setpoints
 - PI control with mold-exit-temperature-based setpoints ("fixed setpoints")
- All videos are recorded at 6x playback speed
Spray table control

PI Control: speed-based setpoints
Controller Performance Comparison

- Spray-table control displays temperature overshoot during slowdown
- PI control with speed-varying setpoints reacts quickly at all points throughout caster
- PI control with fixed setpoints reduces sprays more gradually in zones further down the caster
Future Research: Advanced Control Development

- Surface temperature control does not guarantee metallurgical length control
 - Develop control algorithm for centerline temperature
 - Switch between objectives?
 - solidification front (prevent whales)
 - surface temperature (steel quality)?

- New NSF grant: “Hybrid Control of Continuous Casting for Whale and Crack Prevention”
 - Closed-loop measurements are very spatially localized (discrete)
 - Mold heat removal rate
 - Pyrometer readings
 - Need temperatures between measurements (continuous)

Future Research: Model Development

- Make model robust to casting conditions and data errors
- Improve accuracy of model by adding physical behavior
 - More accurate heat transfer coefficients (Sami, Xiaoxu’s research)
 - Possible hysteresis effects during spray changes
Thank you!

- Continuous Casting Consortium Members
- Nucor Decatur
 - Terri Morris, Rob Oldroyd, Kris Sledge, Ron O’Malley
- National Science Foundation
 - GOALI DMI 05-00453 (Completed July 29, 2009)
 - GOALI CMMI-0900138 (Received July 14, 2009)
- Other CCC grad students
 - Sami Vapalahti, Xiaoxu Zhou