



#### **ANNUAL REPORT 2009**

University of Illinois, August 5, 2009

## Online Control of Spray Cooling Using Cononline

Bryan Petrus BG Thomas Joseph Bentsman

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign





- Cononline Overview
  - Consensor: "software sensor"
  - Concontroller: PI controller bank
  - Monitor
- Controller performance comparison
- Future research



#### Project Motivation: Approaches to Cooling Spray Control

#### 1) Manual control:

- Operator sets of water flow rates
- Difficult at high casting speeds when response times must be short

#### 2) Casting-speed-based control:

- Set water flow rates according to casting speed
- Results in non-optimal cooling during transient conditions

#### 3) Conventional feedback control:

- Limited measurement opportunities
- Pyrometers etc. can be unreliable in spray zones

#### 4) Software-sensor-based control:

 Create "software sensor," an accurate, real-time computational model to base control on









# Consensor Overview: CON1D

 Fundamentally based transient finitedifference model:

$$\rho_{steel} C p_{steel}^* \frac{\partial T}{\partial t} = k_{steel} \frac{\partial^2 T}{\partial x^2} + \frac{\partial k_{steel}}{\partial T} \left(\frac{\partial T}{\partial x}\right)^2$$

- CON1D predicts:
  - shell thickness
  - temperature distribution
  - heat flux profiles
- Suitable for real-time model
  - Can simulate entire caster in < 1 second</li>
  - "Restart mode": Can stop simulation at arbitrary point, continue later



## **Consensor** Overview

Multiple "slices"

huous asting

- Each second, simulate each slice for 1 second
- 200 slice simulation for 1 second each takes ~ same time as 1 slice through entire caster: < 0.5 seconds
- Consensor
  - stores and manages 200 CON1D slices
  - Interpolates between slices to estimate full shell & temperature profile



Distance below meniscus, z

7

University of Illinois at Urbana-Champaign

```
Metals Processing Simulation Lab
```

n Lab • Bryan Petrus, BG Thomas, & Joseph Bentsman

**Concontroller Overview:** Spray Zones nuous sting onsortium SPRAY ZONE  $4 \times 1 + 3 \times 2 =$ = Zone 1 **10 controllers** 1 A #125 Zone 2 #125 ıВ ¢128 Zone 3 ¢140 Zone 4 \$160  $\oplus \oplus \oplus \oplus \oplus$ #230 ORIVEN DRIVEN ¢190 #190 ¢190 #190 Zone 5 (Q), (Inner/Outer) Zone 6 Zone 7 (Inner/Outer) (Inner/Outer)



## **Concontroller Overview**

- Zone-based PI control: 10 individual PI controllers, one for each spray zone
- Controller Algorithm: At each second of time:
  - 1. Obtain surface temperature profile from CONONLINE.
  - 2. For all 10 zones:
    - i. Compute the zone-based average surface temperature error for current zone:  $\int_{\Delta T_i(t) = \frac{zone_j}{T}} \left[ T^s(z,t) \hat{T}(z,t) \right] dz$
    - ii. Use  $T_{err}$  to compute the water flow rate command:

 $u_{j}(t) = k_{j}^{P} \Delta T_{j}(t) + \int_{0}^{t} k_{j}^{I} \Delta T_{j}(t) dt$ 

3. Send all water flow rate commands to Consensor, caster automation, and Monitor

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign



# **Setpoint Methodologies**

- Speed-based spray flow setpoints – current Nucor spray practices
- Temperature setpoints (zone-averages) based on steady states for flows in (1)
- 3. Vary (2) based on casting conditions
  - Casting speed
  - Mold exit temperature (mold heat flux, superheat)
- 4. Operator chosen

|                     | Pattern 1 | Pattern 2 | Pattern 3 | Pattern 4 |
|---------------------|-----------|-----------|-----------|-----------|
|                     | (i/min)   | (in/min)  | (in/min)  | (in/min)  |
|                     | (gal/min) | (gal/min) | (gal/min) | (gal/min) |
| Zone 1, Speed 1     | 0         | 0         | 0         | 0         |
| Zone 1, Flow Rate 1 | 0         | 0         | 0         | 0         |
| Zone 1, Speed 2     | 15.7      | 15.7      | 15.7      | 15.7      |
| Zone 1, Flow Rate 2 | 26        | 24        | 26        | 23        |
| Zone 1, Speed 3     | 31.5      | 31.5      | 31.5      | 31.5      |
| Zone 1, Flow Rate 3 | 26        | 24        | 26        | 23        |

Brvan Petrus, BG Thomas, & Joseph Bentsman

9

10





### Monitor Overview: Profile Screen



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Bryan Petrus, BG Thomas, & Joseph Bentsman 11



#### Monitor Overview: Parameter Screen



Bryan Petrus, BG Thomas, & Joseph Bentsman

## **Monitor Overview**





luous

# Ongoing work on Cononline

- Adding new features to Monitor (for plant operation)
  - "Passive" mode that displays without allowing changes to setpoints
  - Automatic resize window from 1024x768 up
  - Options (servers, mode) set in configuration file
- Changing to production versions of software
  - Programs run as Linux "daemons"
  - Program log files can be used for debugging
- Fixing stability issues
- Multi-threading Consensor for faster running



#### Controller Performance Comparison

- Based on caster data recorded at Nucor Decatur
  thanks to Terri Morris, Rob Oldrovd, and Alan Hable
- Simulations run in real-time at UIUC
  - HP servers, Intel Xeon processors
- Test situation: sudden slowdown
  - Casting speed drops from 3.0 m/min to 2.5 m/min 30 seconds into simulation
- Comparing four different control methodologies
  - No control (constant spray rates)
  - Spray-table based control
  - PI control with speed-based setpoints
  - PI control with mold-exit-temperature-based setpoints ("fixed setpoints")

No Control (fixed spray rates)

• All videos are recorded at 6x playback speed

```
University of Illinois at Urbana-Champaign
```

```
 Metals Processing Simulation Lab
```

ion Lab • Bryan Petrus, BG Thomas, & Joseph Bentsman

tsman 15





## Spray table control



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Bryan Petrus, BG Thomas, & Joseph Bentsman 17



Dtinuous Casting

#### PI Control: speed-based setpoints





# PI Control: fixed setpoints



19 University of Illinois at Urbana-Champaign Metals Processing Simulation Lab • Bryan Petrus, BG Thomas, & Joseph Bentsman



#### **Controller Performance** Comparison

- Spray-table control displays temperature overshoot during slowdown
- PI control with speed-varying • setpoints reacts quickly at all points throughout caster
- PI control with fixed setpoints reduces • sprays more gradually in zones further down the caster





300

100 150 200 Time (s)

spray table control PI control. speed-d

10

103

102

radius Outer 104

20



## Future Research: Advanced **Control Development**

Model:

1D slices

traversing 2D cross

section of 3D strand

 $T_i(x,t)$ 

Control

Objective

Temperatu shell

surface,  $T_{i}(\pm L, t)$ 

Boundary Disturb

Initial condition

from mold heat removal rate

Uncontrolled heat flux from: roll/shell convection,  $(h_{roll} + h_{rad soray} + h_{conv})(T_i(\pm L,t))$ 

Open-loop predicto

error evolution

Pyrometer locations

lel

- Surface temperature control does not guarantee metallurgical length control
  - Develop control algorithm for centerline temperature
  - Switch between objectives?
    - solidification front (prevent whales)
    - surface temperature (steel quality)?
- New NSF grant: "Hybrid Control of Continuous Casting for Whale and Crack Prevention"
  - Closed-loop measurements are very spatially localized (discrete)
    - Mold heat removal rate
    - Pyrometer readings
  - Need temperatures between measurements (continuous)



```
Metals Processing Simulation Lab
```

Slice initiation time

21 Bryan Petrus, BG Thomas, & Joseph Bentsman

Slice exit time

undary Sensing

 $T_{t}(\pm L_{t})$ 

velocity,

Mold heat removal rate,  $Q_{mold}(t)$ 

measurements from pyrometers

**Boundary Actuation:** 

 $(T_{t}(\pm L_{t} - T_{t}))$ 

Closed-loop observer actions:

predictor reinitialization through

controlled discrete transitions

Cooling water spray rate u(t), generates heat flux

Boundary point temperature



## Future Research: Model **Development**

- Make model robust to casting conditions and data errors
- Improve accuracy of model by adding physical behavior
  - More accurate heat transfer coefficients (Sami, Xiaoxu's research)
  - Possible hysteresis effects during spray changes

# Thank you!



- Continuous Casting Consortium Members
- Nucor Decatur
  - Terri Morris, Rob Oldroyd, Kris Sledge, Ron O'Malley
- National Science Foundation
  - GOALI DMI 05-00453 (Completed July 29, 2009)
  - GOALI CMMI-0900138 (Received July 14, 2009)
- Other CCC grad students
  - Sami Vapalahti, Xiaoxu Zhou

