Objectives

- To develop computational models of continuous casting of steel and related processes
- To apply these models to problems of practical interest to the steel industry
Attendees

<table>
<thead>
<tr>
<th>Company</th>
<th>Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB</td>
<td>Patrick Hanley & Hongliang Yang</td>
</tr>
<tr>
<td>Baosteel:</td>
<td>Chengbin Li</td>
</tr>
<tr>
<td>Corus:</td>
<td>Steve Swoope</td>
</tr>
<tr>
<td>Delavan / Goodrich:</td>
<td>Rob Nunnington</td>
</tr>
<tr>
<td>LWB Refractories:</td>
<td></td>
</tr>
<tr>
<td>Arcelor-Mittal:</td>
<td>Metin Yavuz & Rich Gass (Inland); Tim Kaurich, (Riverdale)</td>
</tr>
<tr>
<td>Nucor Steel:</td>
<td>Ron O'Malley (Decatur, AL), Curtis Glenn (Kankakee, IL)</td>
</tr>
<tr>
<td>Arcelor-Mittal:</td>
<td>Steve Wigman & Tony Bryan (Crawfordsville, IL)</td>
</tr>
<tr>
<td>Nippon Steel:</td>
<td>Junya Iwasaki, Akira Usami, Norimasa Yamasaki</td>
</tr>
<tr>
<td>Postech:</td>
<td>Seon-Hyo Kim, Seong-Mook Cho, and Huoung-Jun Lee</td>
</tr>
<tr>
<td>Steel Dynamics Inc.:</td>
<td>Clayton Spangler</td>
</tr>
<tr>
<td>POSCO:</td>
<td></td>
</tr>
<tr>
<td>Ansys / Fluent Inc.:</td>
<td>Ashwini Kumar & Mohammad (Peyman) Davoudabadi</td>
</tr>
<tr>
<td>Other CCC researchers</td>
<td>Seong-Mook Cho, Seid Koric,</td>
</tr>
</tbody>
</table>

Day 1: Morning Session

8:00am Breakfast & Introductions 2005 Mech. Eng. Lab. (Deere Pavilion)

8:10 B.G. Thomas: Overview of projects
8:20 L. Hibbeler Entrainment at the Mold Surface due to High-Velocity Shear Flow
8:40 R. Chaudhary Differences between Water Models and Steel Casters
9:05 R. Chaudhary Stopper-Rod Misalignment Effects on Fluid Flow
9:25 S-M. Cho Misalignment Effects on Vortex Formation
9:45 D. Crosbie, J. Sengupta, & BG Thomas Effect of Stopper Rod Movement on Mold Flow and Sliver Formation

10:00 Break

10:15 S-M. Cho & R. Chaudhary Electromagnetic effects on multi-phase flow in the slab casting mold
11:15 R. Liu Electromagnetic and Multi-phase flow effects on Particle Entrapment in the Slab Casting Mold
11:45 R. Liu & S. Koric Fluid Flow and Heat Transfer in a Beam Blank Mold
12:00 Discussion of flow and heat transfer projects

12:30pm Lunch 2005 Mech. Eng. Lab
Day 1: Afternoon Session

1:30 J. Iwasaki Calibration of Mold Heat Transfer Models with Breakout Shell Measurements
2:00 B. Petrus Online Control of Spray Cooling using CONONLINE
2:30 X. Zhou Heat Transfer during Spray Cooling using Steady Experiments
3:00 Break
3:45 L. Hibbeler Thermal-Mechanical Behavior of the Solidifying Shell, Ideal Taper, and Longitudinal Crack Formation in a Funnel Mold
4:15 M. Rowan Stress and Hot Tearing of Solidifying Steel Shells: Experiment and Simulation
4:45 V. Singh Modeling Heat Transfer and Skull-Clogging in Submerged Entry Nozzles
5:00 V. Natarajan Modeling of Mold Oscillation
5:15 Group discussion of future projects and directions
5:30 Adjourn meeting
6:00 Dinner Colonial Room, Illini Union Building

Day 2

 Informal discussions on future projects
 (Prior appointments would be helpful)
8:00 – 10:00 Nucor Steel discussion (R. O'Malley)
10:00 – 11:00 LWB discussion (R. Nunnington)
11:00 – 11:30 Mittal discussion (M. Yavuz)
1:00 – 3:00pm NSC discussion (N. Yamasaki)
3:00 – 4:00pm ABB discussion (Hongliang Yang)

8:00 am-? Research group: 345 Mech. Eng. Bldg.
 Informal discussions with students
 Further details on current projects and software
 CON1D operation etc.
 Questions

Day 3 (Aug. 7) -
Flow Dynamics and Electromagnetic Effects in Continuous Casting of Steel
B.G. Thomas,* R. Chaudhary, and R. Liu
Continuous Casting Consortium**
Computational models of transient, multiphase fluid flow are being developed, validated, and applied to improve understanding of transient flow, inclusion transport and defect formation in the mold region during the continuous casting of steel slabs. The important effect of electromagnetic forces to slow down and control the flow pattern are being incorporated. The effect of process parameters, such as nozzle geometry and gas injection rate, which are easy to change and yet profoundly influence both flow and product quality, are being investigated. Models to compute the transport and entrapment of inclusion particles are being tested through water model experiments, steel plant trials, and metallographic measurements at several steel companies who are cosponsoring this research. Plant measurements include magnetic field strength for ruler-fields, and nail-board velocity and surface profile measurements.

Entrapment of Bubbles and Inclusions during Flow in the Mold
B.G. Thomas,* S.H. Kim, R. Chaudhary, R. Liu, S.M. Cho, and G.G. Lee
Continuous Casting Consortium**, POSTECH, Korea
Inclusion particles and bubbles carried by the turbulent flow of molten steel through the continuous casting nozzle and mold pool lead to serious surface and internal defects in the final product. Three-dimensional turbulent fluid-flow models are being applied to understand and quantify inclusion transport and entrapment for different casting conditions. The models incorporate the effects of nozzle clogging, and inclusion entrapment by the solidifying dendritic interface. Experimental and water model studies are being conducted and analyzed to determine the argon bubble size. The effect of asymmetric flow, such as caused by stopper-rod misalignment, and nozzle design parameters are also investigated. The computations are validated and augmented with measurements, metallographic analysis, and plant trials conducted at POSCO and elsewhere.

Effect of Stopper-Rod Movement on Transient Mold Flow and Product Quality
Continuous Casting Consortium**
Transient events in the mold, such as sudden stopper-rod movement cause changes in turbulent flow of molten steel through the continuous casting nozzle and mold pool, leading to level fluctuations, inclusion entrainment, and internal defects in the final product. Transient three-dimensional models of turbulent flow are being developed, including the effects of dynamic flow oscillations and surface waves. They are being applied to model specific events involving stopper-rod movement, which have been quantified linked to specific product defects. Detailed plant measurements to support this project are being performed at ArcelorMittal Dofasco to measure mold flow parameters, including changes in stopper movement with time, and to correlate them quantitatively with specific sliver defects in ultra-low-carbon steel coils. The results will lead to new understanding and better methods to predict and improve product quality through online detection.

Thermal Stress Analysis of Solidifying Steel Shells
B.G. Thomas,* L. Hibbeler, S. Koric, K. Xu, M. Rowan.
Continuous Casting Consortium**
A coupled, two-dimensional, transient finite-element model has been developed to predict temperature, shrinkage, and stress development in both horizontal and vertical sections through the solidifying shell as it moves down through the caster. The model includes the effects of the volume change during phase transformation, ferrostatic pressure, the generalized plane strain stress state, the constraining influence of the mold, creep plasticity, and the dynamic effect of solidification shrinkage on heat transfer across the interfacial gap between the mold and the shell. The model is being applied to simulate the early stages of solidification, ideal taper for different steel grades, maximum casting speed to avoid excessive bulging, and understanding crack formation. Finally, the model is being extended to simulate behavior in complex shapes including ideal taper of beam blank molds, and crack formation in thin slabs cast in funnel molds, using full three dimensional simulations.
Control of Nozzle Clogging
J. Bentsman,* B.G. Thomas,* V. Natarajan
Continuous Casting Consortium**, LWB Refractories

Fundamental modeling studies are being performed to understand and control nozzle clogging. Argon gas bubbles are known to prevent clogging. The flow of argon gas through the porous refractory walls has been modeled to determine the gas distribution entering the molten steel. Skulling is a type of clogging caused by insufficient steel temperature combined with heat loss through the refractory walls. To develop active means of clogging minimization, the heat transfer equations governing steel solidification in the nozzle are being transcribed into a control-oriented dynamic model of nozzle clogging. The manipulability of the clogging formation through upstream heat input, as well as possible sensing arrangements are also being investigated. Suitable control laws for heat input are being formulated to prevent skull clogging.

Modeling of Heat Transfer, Clogging and Erosion of Nozzle Refractories
B.G. Thomas,* V. Singh.
Continuous Casting Consortium, LWB Refractories

Depending on their composition relative to the inclusions in the steel, the walls of nozzle refractories can clog or erode, leading to severe quality problems in cast products. Fundamental computational models are being developed to study the complex coupled phenomena which govern this process: the turbulent flow of molten steel through the nozzle, contacting of solid inclusions in the steel with the nozzle wall, heat transfer in the wall and molten steel, the diffusion of compounds such as Al2O3 and CaO through the nozzle wall, and the thermodynamics of the chemical reactions that form solid precipitates, or change the composition of the inclusions to liquefy them, allowing them to erode from the walls. With the support of experimental measurements, the models provide new insights into this process, and estimates of clogging and erosion rates. As a first step, a computational tool has been developed to predict transient temperature evolution during preheating, cooling, and casting, including a model of flame temperature, and solidified steel-skull formation during the initial stages of casting with a cold nozzle.

User-Friendly Interface for CON1D
B.G. Thomas,* H. Jasti.
Continuous Casting Consortium;**

CON1D is an efficient computational model for calculating heat transfer and related phenomena in the continuous-casting of steel slabs including both the mold and strand. Its predictions of mold temperature, shell thickness, mold heat flux, interfacial friction, structure, strand-temperature in the spray zones, metallurgical length, and other casting parameters have been validated with many different plant measurements. It is already in use in several steel plants and has been incorporated into a real-time online control system. To enable easier application of this powerful tool, a new user-friendly interface is being developed. This interface will enable coupling the model with other models, off-line data bases, and post-processors, using an intuitive graphical interface. This will increase the usage of the model in industry, and will facilitate new applications.

Precipitation and Surface Crack Formation in Continuous Casting
B.G. Thomas,* Kun Xu
Continuous Casting Consortium**

Surface cracks are caused by metallurgical embrittlement and tensile stress in the steel shell as it moves down through the mold and below between the rolls in the secondary cooling zones. Mathematical heat flow and stress models have been developed to predict the temperature, strain, and stress development during this process. Fundamental models of precipitate formation and grain size are being developed to predict ductility as a function of steel grade and the thermal history. Criteria for crack formation arising from these models will be evaluated with microstructure observations, steel ductility measurements, and crack frequency to establish practices that can minimize cracking problems.
Manipulating the Contacting and Solidification of Molten Metal in Continuous Casting
B.G. Thomas,* O. Alber, V. Singh.
National Science Foundation, Collaborative Research: NSF CMII 07-27620
Stress and strain that arise during initial solidification of aluminum and steel is important to the formation of surface defects. Small gaps forming due to gas entrainment or meniscus oscillation generate complex coupling between heat transfer and thermal stress. A fundamental understanding of how key phenomena such as alloying, cooling rate and thermal-mechanical behavior influence this behavior could enable improvements in the control of surface quality. This would make single-wheel strip casting a feasible alternative to other solidification processes. Advanced computational models are being applied to study these phenomena, including constitutive models that relate strain rate to stress and microstructure for aluminum solidification and other temperature dependant material properties.

GOALI: Online Dynamic Control of Cooling in Continuous Casting of Thin Steel Slabs; Hybrid Control of Continuous Casting for Whale and Crack Prevention
Continuous Casting Consortium;** National Science Foundation GOALI DMI 05-00453 and GOALI CTRL div
Temperature variations during cooling cause quality problems such as cracks, especially under transient conditions such as caused by changes in casting speed. Setting the spray water flow rates to maintain optimal temperature profiles during process changes becomes increasingly difficult when the casting speeds are high and response times must be fast. This project aims to develop a fundamentally-based online system to dynamically control the water flow rates in order to continuously optimize and stabilize cooling conditions in the thin slab casting process. The system uses model-based predictive control, incorporating both online measurements of mold heat removal and on a high-speed finite-difference model of heat conduction and solidification during the process. Model accuracy is being validated with measurements of spray heat transfer in controlled lab experiments and in the steel plant.

Prediction of Hot Tearing Cracks during High-Alloy Continuous Casting at Baosteel
B. G. Thomas,* C. Li, M. Rowan.
Baosteel, Shanghai, PRC.
High-alloy steel products are susceptible to internal “hot-tear” cracks during continuous casting. Efficient and robust computational models of transient thermal-stress have been developed to predict temperature, strain, and stress evolution during the solidification of steel. Fundamental controlled experiments are being conducted to measure the critical strain needed to produce hot tear cracks in different steel grades. By accurately modeling of the experiments, better criteria and methodologies to predict these cracks are being developed. Continuous-casting simulations of realistic plant conditions are being run, including the effects of bulging and bending forces, to predict internal crack formation. The modeling system will then be applied to understand the causes of internal cracks, and to optimize the process to minimize cracks.

Evaluation of Funnel Shapes for Thin Slab Casting
B.G. Thomas,* L. Hibbeler.
CORUS, Netherlands; POSCO, Pohang, S. Korea
Continuous-casting molds with a central funnel-shape are used to cast thin slabs using conventional flow nozzles. They have the disadvantage of generating additional stress and strain in the solidifying steel shell, leading to increased tendency for longitudinal facial crack (LFC) formation. Advanced computational models of heat transfer, stress, strain, and crack formation are being developed to understand the mechanisms of LFC formation, and to investigate designs of funnel shape and narrow-face tapers, to lessen the chance of LFC formation. In addition to handling the complex geometries, the models incorporate accurate constitutive models of the mechanical behavior, and criterion functions to predict the formation of hot-tear cracks. Model validation is assisted by experimental measurements of heat transfer and crack incidence in operating thin-slab casters.