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(temperature in Celsius) 

Installation of Sensor Strip into 
Continuous Casting Mold

k=109 W/m-°C

adhesive & coating applications to +600°C
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TFTC Designed for Use in a 
Continuous Casting Mold
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Heat flux can be 
measured by a 
thermopile with two 
layers of ceramic
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Air Gap Effect on Heat Transfer

Air gaps increase hot face temperature by up to 20%, 
depending on geometry of gap
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More Specifically…
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Original Geometry (2mm x 0.1mm)

max temp at hot face 314°C
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Thicker Gap (2mm x 0.2mm)

Wider Gap (4mm x 0.1mm)

max temp at hot face 319°C

max temp at hot face 379°C

• Doubling the thickness of the gap 
increases the hot face temperature by 5°C, 
doubling the width of the gap increases the 
hot face temperature by 65°C
• A wider gap makes it more difficult for 
heat to conduct around the gap, increasing 
the temperature at the hot face
• For a 2mm wide sensor even a 0.1mm 
gap produces a hot face temperature 
variation of only 28°C 
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Air Gap Effect on Stress

• The copper goes into compression (σmax = 67.8 MPa) while the 
nickel coating layer goes into tension (σmax = 276 MPa)

• The nickel coating layer might yield, debond, or spall off in patches
• An air gap 2 mm wide and 0.1 mm thick causes an ~10-50% 

increase in the stress in the nickel coating layer, compared to a 
nickel coating layer without an air gap
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FBG sensors can be plated 
near the mold face, contacting 
the mold face, or in “clusters”
to achieve high spatial 
resolution

Plating FBG Sensors
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Embedded FBG (Experimental)

Free-floating FBG (Experimental)

Embedded FBG (Theoretical - CTE)
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FBG Sensor Performance

( ) 00
1

T
m

T +−= λλ

where m=sensitivity/slope 
(numbers on plot are 
theoretically calculated), 
λ=Bragg wavelength, and 
λ0 and T0 are the Bragg 
wavelength and 
temperature measured at 
calibration

It is possible to predict the temperature measured by the embedded FBG sensor, but 
the best temperature reading can be obtained by inserting the FBG sensor into a 
hollow stainless steel tube (to decouple temperature and strain effects)
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Theoretical Sensitivity/Slope, m

• Given as change in wavelength divided by 
the change in temperature (Δλ/ΔT)

• Depends on how fiber is used:
– Free-floating (open air)

• depends only on temperature effects

• easily calculated given optical properties of FBG

– Embedded
• depends on temperature and strain effects

• can predict mechanical strain using "CTE" or 
(bimetallic) "beam" method
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Residual Stress in Coating Layer

• Compressive residual stress in 
the nickel coating layer due to 
electroplating process 
produces mechanical strain on 
FBG sensor

• This stress can be determined 
using data from calibrated FBG

( )'0TTE s −−= ασ

10°C"reference" temperature at center 
wavelength of embedded FBG

48°C"reference" temperature at center 
wavelength of free-floating FBG

13.1 x 10-6 /°CCTE of coating layerαs

207 GPaelastic modulus of coating 
layer

E
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~100 MPa (compression)
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Conclusions

• Conventional thermocouples cannot accurately 
quantify temperature (& more complex behavior) 
at meniscus

• TFTC can be silver pasted on CC mold (and 
nickel plated), or FBG sensor can be inserted via 
a plated SS tube (preferable)

• The signal output by FBG sensors embedded in 
a nickel coating layer has been investigated and 
can be predicted with simple equations
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