

Design & Installation of Novel Sensors into the Continuous Casting Mold

Michael K. Okelman & Brian G. Thomas

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Plating FBG Sensors

8

It is possible to predict the temperature measured by the embedded FBG sensor, but the best temperature reading can be obtained by inserting the FBG sensor into a hollow stainless steel tube (to decouple temperature and strain effects)

University of Illinois at Urbana-Champaign · Metals Processing Simulation Lab · Michael K. Okelman

Theoretical Sensitivity/Slope, m

- Given as change in wavelength divided by the change in temperature (Δλ/ΔΤ)
- Depends on how fiber is used:
 - Free-floating (open air)
 - · depends only on temperature effects
 - easily calculated given optical properties of FBG
 - Embedded
 - depends on temperature and strain effects
 - can predict mechanical strain using "CTE" or (bimetallic) "beam" method

9

Residual Stress in Coating Layer

 Compressive residual stress in the nickel coating layer due to electroplating process produces mechanical strain on FBG sensor

 $\sigma = -E\alpha_{s}(T - T_{0})$

~100 MPa (compression)

 This stress can be determined using data from calibrated FBG

Variable	Description	Value		
E	elastic modulus of coating layer	207 GPa		
α _s	CTE of coating layer	13.1 x 10 ⁻⁶ /°C		
Т	"reference" temperature at center wavelength of free-floating FBG	48°C		
	"reference" temperature at center wavelength of embedded FBG	10°C		
University of Illinois at Urbana-Champaign	Metals Processing Simulation Lab	• Michael K. Okelman 13		

Conclusions

- Conventional thermocouples cannot accurately quantify temperature (& more complex behavior) at meniscus
- TFTC can be silver pasted on CC mold (and nickel plated), or FBG sensor can be inserted via a plated SS tube (preferable)
- The signal output by FBG sensors embedded in a nickel coating layer has been investigated and can be predicted with simple equations

Acknowledgements

- Continuous Casting Consortium Members
- National Science Foundation
 DMI 05-28668 (Sensor)
- Prof. Li at University of Wisconsin Madison
- M. Powers & Sumitec Siemens VAI Services
- C. Gulyash, K. Parrish, & MEL Machine Shop
- J. Soares & Center for Microanalysis of Materials at Frederick Seitz Materials Research Laboratory
- C. Graham, S. Fiegle, & ArcelorMittal Riverdale
- Other Graduate students

1	University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Michael K. Okelman	15