
ANNUAL REPORT 2008
UIUC, August 6, 2008

Matthew Rowan 
(Ph.D. Student)

Department of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign

Solidification Stresses and Hot 

Tearing in Solidifying Steel Shells

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • M Rowan 2

Background

• Stress develops in solidifying shell in CC due to: 
– 1) Thermal loading 
– 2) Mechanical loading

• Phenomena:
– Thermal contraction
– Phase transformation
– Temperature gradients
– Interface friction

• Leads to Cracks
– Internal hot tears
– Surface cracks C. Bernhard and G. Xia, Ironmaking

and Steelmaking, 2006
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Steel Shrinkage Varies with 
Composition
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SSCT Experiment
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SSCT Experiment Operation
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Measurements from Each Experiment

• Alloy composition

• Pour temperature

• Temperature Histories (2 thermocouples)
– Inside Cylinder (2mm from exterior face)

– Melt (16-20mm from exterior face)
• Varies with each test

• Final Shell Thickness

• Force History (load cell) 
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Objectives

1) Create thermal-mechanical model of temperature 
& stress-strain behavior of the steel solidification 
experiment (cylinder & shell)

2) Validate model with all measurements

3) Plot model stress / strain histories to better 
understand experiment

4) Evaluate crack criteria

- compare model predictions based on previous crack 
criteria with crack measurements (this work and previous)
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Solution Procedure

• Thermal stress analysis model in ABAQUS
– Temperature determines stress

– Employ user subroutines for constitutive equations 
and 2-level local integration method (Koric, 2006)

• Temperature, strain-rate, phase-, and C content dependant
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Model Assumptions

Assumptions:
- axisymmetry

- no contact resistances at interface

- no heat transfer prior to t=0

- melt TC indicates time of start and end of test

- force data used in the event TC data 
failure

- no heat loss to container walls or top surface

- initial temp-gradient across Zr

- for stress convergence

- shell thickness defined at solid fraction = 0.1

- zero displacement of cylinder at immersion 
surface
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Model Validation – Analytical Solution

• Boley and Weiner

Twall = 1000 oC
41.6

0.4Tinitial = 1495 oC

Units [mm]

oC1000Mold Temperature

oC1495Initial Temperature

GPa15
Elastic Modulus above 

Solidus Temp

GPa40
Elastic Modulus at Mold 

Temp.

kPa35
Yield Stress above Solidus 

Temp.

MPa20Yield Stress at Mold Temp.

--0.3Poisson’s Ratio

m/(moC)2.00E-05Coefficient of Expansion

W/(m-K)33Thermal Conductivity

kJ/kg272Latent Heat

J/(kg-K)661Specific Heat

kg/m37500Density

UnitsValueProperty

Tsol = 1494.38 oC
Tliq = 1494.48 oC
Twall = 1000 oC, h = 220 kW/(m2-K)
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Temperature Validation
Temperature Profile Validation 
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Stress Validation

Stress through the Plate Thickness
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Shell Growth Validation

Shell Thickness Growth
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Verification – Tension Test

• Data based on experiments by Wray (1976)

• Abaqus with UMAT (Koric)

• Temperatures – 950 oC, 1100 oC

• Strain Rate – 1.4 x 10-4 [1/sec]

u (t)

36.8

3.2

( ) tL εtu 0=

Dimensions in [mm]
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Constitutive Equations for Solid Steel
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Provided Data
• Alloying content

– C, Si, Mn, P, S, Ni
• Combined to form  ‘Cp’

– Crack formation sensitive to this 
factor

• Temperature
– 2 locations in the test cylinder

• 2mm from molten steel interface

– 2 locations in the steel melt
• Test dependent 

– 16-20 mm from test cylinder

• Shell Thickness

• Force

Image Source:
http://www.xnqy.cn/shebei1-e.htm
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SSCT Model Domain

C. Bernhard,  Univ. Leoben, 2007

60
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2D Domain of Experimental Apparatus

No flux boundary conditions

No axial (y) displacement at top face 
of the cylinder

Axisymmetric elements (4 nodes)

Tinitial, steel melt ~1540 oC (1535-1548)
Tinitial, test cylinder =25 oC

Mesh size biased to regions
of solidification and large 
temperature gradients

0.04mm plasma-sprayed zirconia layer 
at test cylinder and melt interface

Steel MeltTest 
Cylinder

Air Gap
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Experimental Steel - Composition

Steel No. C Si Mn P S Ni Cp

1 0.05 0.29 1.52 0.012 0.004 0.017 0.07
2 0.07 0.27 1.51 0.012 0.004 0.017 0.09
3 0.09 0.29 1.55 0.011 0.008 0.026 0.12
4 0.13 0.31 1.57 0.014 0.004 0.017 0.15
5 0.15 0.28 1.56 0.014 0.005 0.018 0.17
6 0.20 0.27 1.75 0.014 0.005 0.020 0.23

• Alloying content in terms of percentages

Data Source: University of Leoben
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Background – Experimental 
Conditions

19.8*

18.7*

20.3

24.6

19.6

24.7

Immersion Time*
[sec]

1545
1508.7, 1454

8.750.236

1535
1513.5, 1467.8

8.90.175

1543
1514.8, 1470.2

10.140.154

1548
1518.1, 1476.3

8.50.123

1537
1520.1, 1486.6

8.760.092

1547
1521.5, 1494

8.80.071

Temperature (Pour, 
Liquidus, Solidus) [oC]

Shell 
Thickness 

[mm]
CpTest #

*(Derived from Melt TC, except tests 5&6 used estimated finish time)
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Temperature and Force Profile (Raw Data), Steel Test 3
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Data and Simulation Comparison

• Temperature history
– Immersion (raw data, t ≠ 0) indicates time at which 

simulation begins (simulation time, t = 0)

• Test completed when:
– 1) Melt thermocouple temperature decreases

– 2) Force data decreases (indicated by those running the 
experiment)

• Neglect transient effect of immersing and 
extracting 
– ~2.5 seconds for immersion

– ~2.5 seconds for extraction
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Simulation Initiation

Temperature in the Steel Melt, 16 mm, Steel Test 3
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Temperature Inside Test Cylinder, Test 3
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Shell Thickness  

Thickness measured on same plane
where thermocouples are located

Determined from temperature profile
fs=0.1

TCB TCM

8.75

8.9

10.14

8.5

8.76

8.8

Shell Thickness [mm]
(Experimental)

8.06*6

7.1*5

8.84

8.83

9.12

8.561

Shell Thickness [mm]
(Simulation)

Test #

Steel 3, 24.6s
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Shell Growth Profile, Steel 3

Shell Thickness Growth, Steel 3

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30

SimulationTime [sec]

S
h

e
ll 

T
h

ic
k

n
e

s
s

 [
m

m
]

Simulation, fs=0.1

Measurement

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • M Rowan 28

Force Determination – Shell
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Axial Stress Distribution in Shell 
(Steel 3, t= 24.6 sec)

Note: Previous researchers
only look at one location

Delta Ferrite
(1518.1 T > 1463 oC)
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Shell Strength

• Different phases present across the 
shell thickness

• Increase in strength occurs during 
phase transformation of delta ferrite to 
austenite

• Location of maximum force in shell may 
change during solidification
– Multiple locations investigated
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Phase Fraction for 0.09% C Plain 
Carbon Steel
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Axial Stress Distribution in Shell 
(Steel 3, t= 24.6 sec)
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Austenite Formation (Red)
5 seconds

10 seconds

24.6 seconds
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Phases Across Shell Thickness

T emperature and Stress Profile T hrough the Shell, Steel 3
T ime = 10 sec
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Shell Strength, Steel 3

Comparison of Shell Strengths vs. Location
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Shell Strength Analysis

• Maximum shell strength depends on:
– Heat transfer

– Temperature

– Formation of austenite

• Thickest shell section is not the strongest
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Hot Tearing Mechanisms

#) P.-D. Grasso, J.-M. Drezet and M. Rappaz, January 2002 JOM-e: 
http://www.tms.org/pubs/journals/JOM/0201/Grasso/Grasso-0201.html

Breaking of solid-solid bridges (Verö, 1936)
Liquid film rupture (Pellini, 1952)
Liquid distribution between dendrites/grains 
(Borland 1960)

Still basis of most hot tearing criteria

Segregation is important to hot tearing in steel (Bernhard, Pierer, 2007)
Modeling of HTS in CC process as segregation phenomenon

#)
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Hot Tear Crack Prediction

• Simulations do not take cracking into account
– Cracking indicated by ‘plateau’ in force measurement 

data

• Time when simulation starts to deviate from 
experimental forces likely indicates start of 
crack formation

• To predict cracks: compare calculated and 
critical strain
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Calculation of Critical Strain

• Equation fit over large range of strain rates 
and cooling rates
– (5 – 90 x 10-4 1/sec)

• ΔTB = Brittle temperature difference
– Temperature difference between 90% and 99% solid 

fraction

• Strain rate found from simulation
* Won, MY, Yeo, TJ, Seol, DJ and Oh, KH, “A New Criterion for Internal Crack Formation in 
Continuously Cast Steels”, Met. Trans. B, Vol. 31B, 2000, pp. 779-94

0.3131 0.8638

0.02821
crit

BT
ε

ε
=

Δ
*
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Inelastic Strain at Failure, t = 10 sec, 
Steel 3

12.2 % strain

6.2 % strain
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Summary of Critical Strain Results

2.99.4x10-4121470.161514.84

3.96.4x10-4101467.841513.475

2.68.7x10-4141476.261518.083

3.98.6x10-491493.991521.51

εcritε
. 
(1/sec)ΔTbrittle

(oC)
Tsol (oC)Tliq (oC)Steel #
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Critical Strain as a Function of Carbon Content
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Critical Strain Discussion

• Brittle Temperature Range 
– Determined from CON1D

• Inelastic Strains
– High estimations 

– Constitutive model formulation

– Enforcement of boundary condition

• Critical Strain
– Better agreement with using Won formulation than 

using ABAQUS values for strain
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Conclusions

• Model capable of predicting temperature profiles, 
shell thickness and forces and strains to failure for 
detailed case
– Carbon content is an input variable

• Other steel cases:
– Model needs improvement 

• Inelastic strain over-predicts critical strain

– Empirical relation between critical strain and brittle 
temperature range

– CON1D differs with published data
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What We Need to Improve

• Need more certain values of experimental 
conditions
– Pour Temperature (superheat )

• Shell thickness

– Experiment Duration

– Initial temperature of test cylinder
• Time between tests?

– Multiple tests of one specific alloy to determine 
variance
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Supplemental Material
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Linear Gradient Across Zirconia 
Layer

Comparison of Temperature Histories in Test Cylinder, Steel 3 
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