

Solidification Stresses and Hot Tearing in Solidifying Steel Shells

Matthew Rowan (Ph.D. Student)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Background

- Stress develops in solidifying shell in CC due to:
 - 1) Thermal loading
 - 2) Mechanical loading
- Phenomena:
 - Thermal contraction
 - Phase transformation
 - Temperature gradients
 - Interface friction
- Leads to Cracks
 - Internal hot tears
 - Surface cracks

C. Bernhard and G. Xia, *Ironmaking* and Steelmaking, 2006

SSCT Experiment Operation

- Alloy composition
- Pour temperature
- Temperature Histories (2 thermocouples)
 - Inside Cylinder (2mm from exterior face)
 - Melt (16-20mm from exterior face)
 - Varies with each test
- Final Shell Thickness
- Force History (load cell)

Objectives

 Create thermal-mechanical model of temperature & stress-strain behavior of the steel solidification experiment (cylinder & shell)

- 2) Validate model with all measurements
- 3) Plot model stress / strain histories to better understand experiment
- 4) Evaluate crack criteria

- compare model predictions based on previous crack criteria with crack measurements (this work and previous)

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Solution Procedure

- Thermal stress analysis model in ABAQUS
 - Temperature determines stress
 - Employ user subroutines for constitutive equations and 2-level local integration method (Koric, 2006)
 - Temperature, strain-rate, phase-, and C content dependant

7

Model Assumptions

Assumptions:

University of Illinois at Urbana-Champaign

- axisymmetry
- no contact resistances at interface
- no heat transfer prior to t=0
- melt TC indicates time of start and end of test
 - force data used in the event TC data failure
- no heat loss to container walls or top surface
- initial temp-gradient across Zr
 - for stress convergence
- shell thickness defined at solid fraction = 0.1
- zero displacement of cylinder at immersion surface

Model Validation – Analytical Solution

Metals Processing Simulation Lab

Property	Value	Units
Density	7500	kg/m ³
Specific Heat	661	J/(kg-K)
Latent Heat	272	kJ/kg
Thermal Conductivity	33	W/(m-K)
Coefficient of Expansion	2.00E-05	m/(mºC)
Poisson's Ratio	0.3	
Yield Stress at Mold Temp.	20	MPa
Yield Stress above Solidus Temp.	35	kPa
Elastic Modulus at Mold Temp.	40	GPa
Elastic Modulus above Solidus Temp	15	GPa
Initial Temperature	1495	°C
Mold Temperature	1000	°C

T_{liq} = 1494.48 °C

T_{wall} = 1000 °C, h = 220 kW/(m²-K)

.

9

Temperature Validation

Temperature Profile Validation 1500 1450 1400 Temperature [°C] 1350 1300 1250 B&W 5mm ABAQUS 5mm 1200 B&W 10 mm ABAQUS 10 mm 1150 B&W 30mm ABAQUS 30mm 1100 5 10 15 20 25 0 Time [sec] 11 University of Illinois at Urbana-Champaign Metals Processing Simulation Lab M Rowan

Stress Validation

inuous Casting Consortium

Shell Growth Validation

Constitutive Equations for Solid Steel

Provided Data

- Alloying content •
 - C, Si, Mn, P, S, Ni
 - · Combined to form 'Cp'
 - Crack formation sensitive to this factor
- Temperature
 - 2 locations in the test cylinder
 - 2mm from molten steel interface
 - 2 locations in the steel melt
 - Test dependent - 16-20 mm from test cylinder
- Shell Thickness

Image Source: http://www.xnqy.cn/shebei1-e.htm

Force	bana-Champaign • Metal	Processing Simulation Lab • M Rowan 17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SSCT	Model Domain
		C. Bernhard, Univ. Leoben, 2007

.

Experimental Steel - Composition

Steel No.	С	Si	Mn	Р	S	Ni	Cp
1	0.05	0.29	1.52	0.012	0.004	0.017	0.07
2	0.07	0.27	1.51	0.012	0.004	0.017	0.09
★3	0.09	0.29	1.55	0.011	0.008	0.026	0.12
4	0.13	0.31	1.57	0.014	0.004	0.017	0.15
5	0.15	0.28	1.56	0.014	0.005	0.018	0.17
6	0.20	0.27	1.75	0.014	0.005	0.020	0.23

Data Source: University of Leoben

Alloying content in terms of percentages

inuous Casting Consortium

Background – Experimental Conditions

Test #	Ср	Immersion Time* [sec]	Shell Thickness [mm]	Temperature (Pour, Liquidus, Solidus) [ºC]
1	0.07	24.7	8.8	1547 1521.5, 1494
2	0.09	19.6	8.76	1537 1520.1, 1486.6
3	0.12	24.6	8.5	1548 1518.1, 1476.3
4	0.15	20.3	10.14	1543 1514.8, 1470.2
5	0.17	18.7*	8.9	1535 1513.5, 1467.8
6	0.23	19.8*	8.75	1545 1508.7, 1454

*(Derived from Melt TC, except tests 5&6 used estimated finish time)

Sample Data File

Casting Consortium

inuous Casting

Temperature history

 Immersion (raw data, t ≠ 0) indicates time at which simulation begins (simulation time, t = 0)

Test completed when:

- 1) Melt thermocouple temperature decreases
- 2) Force data decreases (indicated by those running the experiment)
- Neglect transient effect of immersing and extracting
 - ~2.5 seconds for immersion
 - ~2.5 seconds for extraction

Temperature Histories

Thickness measured on same plane where thermocouples are located

Fest #	Shell Thickness [mm] (Experimental)	Shell Thickness [mm] (Simulation)
1	8.8	8.56
2	8.76	9.1
3	8.5 +	→ 8.8
4	10.14	8.8
5	8.9	7.1*
6	8.75	8.06*

•

Shell Growth Profile, Steel 3

- shell thickness
- Increase in strength occurs during phase transformation of delta ferrite to austenite
- Location of maximum force in shell may change during solidification
 - Multiple locations investigated

Austenite Formation (Red)

Phases Across Shell Thickness

nuous

Shell Strength Analysis

- Maximum shell strength depends on:
 - Heat transfer
 - Temperature
 - Formation of austenite
- Thickest shell section is not the strongest

- Breaking of solid-solid bridges (Verö, 1936)
- Liquid film rupture (*Pellini*, 1952)
- Liquid distribution between dendrites/grains (Borland 1960)
- Still basis of most hot tearing criteria

- Segregation is important to hot tearing in steel (*Bernhard, Pierer, 2007*)
- Modeling of HTS in CC process as segregation phenomenon

#) P.-D. Grasso, J.-M. Drezet and M. Rappaz, January 2002 JOM-e: http://www.tms.org/pubs/journals/JOM/0201/Grasso/Grasso-0201.html

- University of Illinois at Urbana-Champaign
- Metals Processing Simulation Lab

M Rowan

37

Hot Tear Crack Prediction

- · Simulations do not take cracking into account
 - Cracking indicated by 'plateau' in force measurement data
- Time when simulation starts to deviate from experimental forces likely indicates start of crack formation
- To predict cracks: compare calculated and critical strain

Calculation of Critical Strain

- Equation fit over large range of strain rates and cooling rates
 - (5 90 x 10⁻⁴ 1/sec)

• ΔT_B = Brittle temperature difference

 Temperature difference between 90% and 99% solid fraction

· Strain rate found from simulation

* Won, MY, Yeo, TJ, Seol, DJ and Oh, KH, "A New Criterion for Internal Crack Formation in Continuously Cast Steels", *Met. Trans. B,* Vol. 31B, 2000, pp. 779-94

Steel #	T _{liq} (°C)	T _{sol} (°C)	ΔT _{brittle} (°C)	ε (1/sec)	ε _{crit}
1	1521.5	1493.99	9	8.6x10 ⁻⁴	3.9
3	1518.08	1476.26	14	8.7x10 ⁻⁴	2.6
4	1514.8	1470.16	12	9.4x10 ⁻⁴	2.9
5	1513.47	1467.84	10	6.4x10 ⁻⁴	3.9

Metals Processing Simulation Lab

.

.

41

Critical Strain Discussion

Brittle Temperature Range

- Determined from CON1D
- Inelastic Strains
 - High estimations
 - Constitutive model formulation
 - Enforcement of boundary condition
- Critical Strain
 - Better agreement with using Won formulation than using ABAQUS values for strain

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Conclusions

- Model capable of predicting temperature profiles, shell thickness and forces and strains to failure for detailed case
 - Carbon content is an input variable
- Other steel cases:
 - Model needs improvement
 - Inelastic strain over-predicts critical strain
 - Empirical relation between critical strain and brittle temperature range
 - CON1D differs with published data

43

What We Need to Improve

- Need more certain values of experimental conditions
 - Pour Temperature (superheat)
 - Shell thickness
 - Experiment Duration
 - Initial temperature of test cylinder
 - Time between tests?
 - Multiple tests of one specific alloy to determine variance

University of Illinois at Urbana-Champaign

Acknowledgements

Metals Processing Simulation Lab

- Continuous Casting Consortium Members
- Christian Bernhard & Robert Pierer
 University of Leoben
- National Center for Supercomputing Applications (NCSA) at UIUC
- ABAQUS

45

Supplemental Material

