

ANNUAL REPORT 2008

Mech

UIUC, August 6, 2008

Heat transfer and distortion of a beamblank mold: plant measurements and model computations

Lance C. Hibbeler (MS Student)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Objective

- Analyze a beam blank mold (Steel Dynamics, Inc.) with a numerical model to investigate:
 - Mold temperatures
 - Mold cracking
 - Thermal distortion of the mold and water box
- Incorporate the distortion results into a coupled thermal-stress model of the solidifying shell

2

Beam Blank Mold

Heat Flow Into Mold

 Previous modeling work, combined with plant measurements, yields a validated heat flux profile down the mold

Heat Flux Validation

	Experimental (kW)	Mold Model (kW)	Error
Wide Face	1112	1205	+8.3 %
Narrow Face	651	634	-2.6 %
Total	1764	1839	+4.3 %
3.5 3.0 2.5 2.0 1.5 0.0 0 100 200 300 Distance Re	400 500 600 700 800 9	5.0 Meniscus(1 4.5 165.1mm b 4.0 590.6mm b 3.5 Shoulder 3.0 2.5 2.0 1.5 100 00 1.5 0.0 0 00 Distance	52.4mm from top) elow top = 222.3mm below top elow top \rightarrow 406.4mm below top elow top \rightarrow 812.8mm below top Flange corner Narrow face \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

Other Model Parameters

WF water channel convection coefficient	45 kW/(m²·K)
WF water temperature	33.35 °C
NF water channel convection coefficient	34 kW/(m²·K)
NF water temperature	34.48 °C
Copper thermal conductivity	350 W/(m·K)
Copper elastic modulus	115 GPa
Copper Poisson's ratio	0.33
Copper coefficient of thermal expansion	17.0·10 ⁻⁶ 1/ºC
Steel water box elastic modulus	200 GPa
Steel water box Poisson's ratio	0.26

.

•

Narrow Face Temperatures

Hot Face Temperatures

iting

Mold Cracking

• The hot spots predicted on the mold hot face in the meniscus area correspond to cracks that have occurred in practice

[D. Lorento, 2004] University of Illinois at Urbana-Champaign

•

.00 75

14

Translating the Mold Distortion

- In the two-dimensional models of the solidifying shell, the effects of the mold changing shape with distance down the mold are incorporated with displacement functions
- The distorted shape of the mold is processed to create a displacement field relative to the shape at the meniscus
 - Double linear interpolation of the undistorted hot face *coordinates* subtracted from the distorted hot face *coordinates*

Consortium

Mold Distortion Results

- Mold generally bows outwards towards the shell, with a small twisting motion
- Web-region distortion is about 0.4mm, which effectively doubles the taper
- Slant region (between shoulder and inner-flange corner) distorts about 0.2mm towards the steel, which slightly lessens the negative taper
- Flange region distorts about 0.2mm, which only slightly increases the taper.
- Corner experiences negligible distortion (wellcooled)
- Narrow face distortion increases taper curvature, causing ~0.5mm more distortion at 1/3 down mold, and ~0.5mm less at bottom (causing negative taper)

Conclusions

- Thermal distortion of a beam blank mold has been calculated, using an experimentally validated heat flux profile
- Locations on the hot face furthest away from the water channels become very hot, especially near the meniscus
 - Problem solved by more and/or smaller water channels in key areas (eg. Shoulder region)
- As the mold heats up, it generally bows outward towards the shell, with a small twisting motion, modifying the taper slightly
- The distorted shape has been successfully processed into displacement functions for use in a two-dimensional Lagrangian model of the shell

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Acknowledgements

- Continuous Casting Consortium Members (Nucor, Postech, LWB Refractories, Corus, Labein, Goodrich, Arcelor-Mittal, Baosteel, Steel Dynamics, Postech, ANSYS)
- Clay Spangler, Don Lorento
- Dr. Seid Koric, Kun Xu, Lyric Shi
- National Center for Supercomputing Applications (NCSA) at UIUC – "Cobalt" cluster
- Dassault Simulia, Inc. (ABAQUS parent company)

Lance C. Hibbeler

23