

ANNUAL REPORT 2008

Mech

UIUC, August 6, 2008

Thermal-mechanical Behavior of the Solidifying Shell and Ideal Taper in a Funnel Mold

Lance C. Hibbeler (MS Student)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

The Problem

- Longitudinal Face Cracks (LFC)
 - Depression type
 - More likely in transition region of the funnel mold
 - Causes about 60% of breakouts at the Corus Direct Sheet Plant (IJmuiden, The Netherlands)
- Investigate effect of funnel mold • design on LFC tendency and mechanisms using:
 - Plant experiments
 - Computational models

LFC Breakout Locations

Data provided by A. Kamperman of Corus

- Gap from necking (self-correcting)
- Gap from buckling (self-amplifying)
- Depression causes:
- 2 Lower heat flux
 - Higher shell temperature $\stackrel{\text{Ar}}{\vdash}$

- Stress and strain concentrations

- Amplifies if buckling
- Thinner shell
- Grain growth (larger grains)
- More brittle behavior
- Combination causes cracks
- 5 Tensile inelastic strain exceeds critical value → cracks form

asting Consortium

Numerical Model

- Coupled thermal-stress analysis with ABAQUS 6.7
 - Transient solidification heat transfer in a moving 2D slice
 - Special two-level integration scheme for elastic-viscoplastic mechanical behavior (implemented with a UMAT user subroutine)
- Temperature-dependent properties (isotropic)
 - Thermal conductivity, specific heat capacity
 - Elastic modulus, coefficient of thermal expansion
 - Inelastic strain depends on temperature, phase (L, $\delta, \gamma)$ and strain rate

Metals Processing Simulation Lab

- Mechanical contact
 - "Softened" exponential pressure-overclosure relationship
 - Interfacial friction factor of μ = 0.16 [Meng *et al.*, CMQ 45-1 pg. 79-94]
- Ferrostatic pressure

University of Illinois at Urbana-Champaign

• 2D model includes the funnel shape and mold oscillations

Lance C. Hibbeler

.

Finite Element Mesh

Process Parameters

		-
Casting speed	5.5 m/min	217 ipm
Carbon content	0.045 %wt	
Pour temperature	1545.0 °C	2813 ºF
Strand width	1200 mm	47"
Narrow face taper	1.0 %/m	
Meniscus depth	104.2 mm	4"
Time in mold	10.86 s	

•

Model Verification

Property/Condition	Property/Condition Value	
Density	7500.0	kg/m³
Specific heat	661.0	J/(kg⋅K)
Latent heat	272.0	kJ/kg
Thermal conductivity	33.0	W/(m⋅K)
Thermal expansion coefficient	20.0E-6	m/(m·⁰C)
Poisson's ratio	0.3	
Initial temperature	1495.0	°C
Liquidus temperature	1494.48	°C
Solidus temperature	1494.38	°C
Mold temperature	1000.0	°C
Yield stress at mold temp.	20.0	MPa
Yield stress in liquid material	35.0	kPa
Elastic modulus in solid	40.0	GPa
Elastic modulus in liquid	14.0	GPa

[Boley and Weiner, 1963]

Temperature Results

Temperature Solution

inuous Casting Consortium

Analytical Bending Model: Effect of Outer Funnel Width

Larger outer funnel width = Wider funnel = Larger radius = Lower bending strain and strain rate

Analytical Bending Model: Effect of Inner Funnel Width

Smaller inner funnel width = Wider funnel = Larger radius = Lower bending strain and strain rate

All cases with 750 mm outer funnel width

huous

Longer Funnel = Increases strain near bottom of funnel (larger radius for more time), but lowers strain rate

Analytical Bending Model:

Effect of Funnel Length

huous asting

Pushing the Shell

- As the crown decreases, the steel shell is pushed inward to the SEN and outward to the narrow faces
 - Opposed by friction and solidification shrinkage
 - Most noticeable at early times before opposing effects are strong, but always present

inuous Casting

Interfacial Gaps

- Predicted gaps are mechanical effects, due to no coupling of mechanical model to heat transfer model (coupled model would have larger gaps)
- Small gaps in the inner curve region
 - "Shell pushing" encourages good contact
- Larger gaps in the outer curve region
 - Shrinkage from outer flat region is resisted by "shell pushing"
- · Both influenced by bending effect
- Shrinkage minus "pushing" meets somewhere in the middle of the funnel

Decomposing Perimeter Length Changes

- 1. Calculate the *total arc length* of the shell as a function of distance from the center of the mold
- 2. Subtract current perimeter length from initial (at meniscus) to get a measure of shrinkage = "Actual Funnel"
- The geometry of the mold allows a closed-form expression of the same quantity; subtract this from the calculated shell shrinkage = "Adjusted Funnel"
- Subtract the corresponding shrinkage of a parallel mold from the above quantity ("what happens to the shell" "what the shell wants to do") = "Difference"
- 5. Adjust for the fact that the shell in a funnel mold is slightly longer, and that longer pieces shrink more = "Adj. Difference"
- 6. Result is a quantification of "pushing" vs. shrinkage as well as a measure of **buckling tendency** in the funnel

- Continuous Casting Consortium Members (Nucor, Postech, LWB Refractories, Corus, Labein, Goodrich, Arcelor-Mittal Riverdale, Baosteel, Steel Dynamics, ANSYS)
- Dr. Seid Koric, Dr. Chunsheng Li, Dr. Hong Zhu
- Begoña Santillana, Arie Hamoen, Arnoud Kamperman, Dr. Jean Campaniello, Frank Grimberg
- National Center for Supercomputing Applications (NCSA) at UIUC – "Tungsten" and "Abe" clusters
- Dassault Simulia, Inc. (ABAQUS parent company)

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Lance C. Hibbeler •