

ANNUAL REPORT 2008

Mech **SE**

UIUC, August 6, 2008

Online Control of Spray Cooling Using

Cononline

Bryan Petrus BG Thomas Joseph Bentsman

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Acknowledgements

- Continuous Casting Consortium Members
- Nucor Decatur
 - Terri Morris, Rob Oldroyd, Kris Sledge, Ron O'Malley, Alan Hable
- National Science Foundation
 - GOALI DMI 05-00453 (Online)
- Other CCC grad students
 Huan Li, Sami Vapalahti, Xiaoxu Zhou

- Cononline Overview
 - Consensor: "software sensor"
 - Concontroller: PI controller bank
 - Monitor
- Real-time simulations
 - Startup
 - Tailout

University of Illinois at Urbana-Champaign

- Setpoint change
- Future research

Project Motivation: Approaches to Cooling Spray Control

3

Bryan Petrus, BG Thomas, & Joseph Bentsman

1) Manual control:

- Operator sets of water flow rates
- Difficult at high casting speeds when response times must be short

2) Casting-speed-based control:

Set water flow rates according to casting speed

Metals Processing Simulation Lab

- Results in non-optimal cooling during transient conditions

3) Conventional feedback control:

- Limited measurement opportunities
- Pyrometers etc. can be unreliable in spray zones

4) Software-sensor-based control:

 Create "software sensor," an accurate, real-time computational model to base control on

Consensor Overview: CON1D

Fundamentally based transient finite-difference • model:

$$\rho_{steel} C p_{steel}^* \frac{\partial T}{\partial t} = k_{steel} \frac{\partial^2 T}{\partial x^2} + \frac{\partial k_{steel}}{\partial T} \left(\frac{\partial T}{\partial x} \right)^2$$

- CON1D predicts: •
 - shell thickness
 - temperature distribution
 - heat flux profiles
- Suitable for real-time model
 - Can simulate entire caster in < 1 second
 - "Restart mode": Can stop simulation at arbitrary point, continue later

University of Illinois at Urbana-Champaign

Consensor Overview

- Multiple "slices"
 - Each second, simulate each slice for 1 second
 - 200 slice simulation for 1 second each takes ~ same time as 1 slice through entire caster: < 0.5 seconds
- Consensor
 - stores and manages 200 CON1D slices
 - Interpolates between slices to estimate full shell & temperature profile

Center-line view of caster

Concontroller Overview

- Zone-based PI control: 10 individual PI controllers, one for each spray zone
- Controller Algorithm: At each second of time:
 - 1. Obtain surface temperature profile from CONONLINE.
 - 2. For all 10 zones:
 - i. Compute the zone-based surface temperature average T_{avg} for current zone. And form the tracking error $T_{err} = T_{avg} T_{sp}$
 - ii. Use T_{err} to compute the water flow rate command = Nominal_flow + Δ flow(t),

 $\Delta flow(t) = k_p T_{err}(t) + k_i \int_0^t T_{err}(s) ds$

3. Send all water flow rate commands to Consensor, Caster, and Monitor

Setpoint Methodologies

- 1. Speed-based spray flow setpoints current Nucor spray practices
- 2. Temperature setpoints (zone-averages) based on steady states for flows in (1)
- 3. Vary (2) based on casting conditions
 - Casting speed

University of Illinois at Urbana-Champaign

tinuous Casting

onsortium

8/4/2008 9:6:28

Shell

Thickness

(mm) %

Shell Thickness

100

50

Mold exit temperature (mold heat flux, superheat)

Metals Processing Simulation Lab

4. Operator-chosen temperature setpoints

	Pattern 1	Pattern 2	Pattern 3	Pattern 4
	(i/min)	(in/min)	(in/min)	(in/min)
	(gal/min)	(gal/min)	(gal/min)	(gal/min)
Zone 1, Speed 1	0	0	0	0
Zone 1, Flow Rate 1	0	0	0	0
Zone 1, Speed 2	15.7	15.7	15.7	15.7
Zone 1, Flow Rate 2	26	24	26	23
Zone 1, Speed 3	31.5	31.5	31.5	31.5
Zone 1, Flow Rate 3	26	24	26	23

400 (Deg F) 200

2400 2200

Temperature (Deg F 1800 1400 1200 F

Ξ 1000 300

that a state of the state of th

12

Real-time Simulations

- Caster data recorded at Nucor Decatur
 - thanks to Terri Morris, Rob Oldroyd, and Alan Hable
- Simulations run in real-time at UIUC
 - HP DL380 G5 servers, Intel Xeon processors

Situations:

- 1. Casting startup
- 2. Slab tailout
- 3. Change in temperature setpoints

Tailout

- Simulating recorded caster data at Nucor Decatur
- 0.05 % Carbon steel
- Played at 3x speed

19

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Bryan Petrus, BG Thomas, & Joseph Bentsman

Temperature Setpoint Change

- Casting conditions based on initial state in previous tailout simulation
 - 0.05 % Carbon steel
 - 3.0 m/min casting speed
 - 26 °C superheat
- Setpoint in 4th zone changed by operator
 - Initial value: 1071 °C (1960 °F)
 - Changed to: 1000 °C (1832 °F)
- Played at 3x speed

Advanced Control Development

• Anti-windup

tinuous Casting Consortium

- Actuator saturation can lead to windup of integral controller
- Simple anti-windup scheme added
- Optimal control law development
 - In progress
 - Control laws have been designed for 1-D heat equation with spatially varying parameters
- Metallurgical length (ML) control
 - In progress

Control Law

Performance

- Software sensor
 - Make model robust to casting conditions and data errors
 - Improve accuracy of model by adding physical behavior
 - More accurate heat transfer coefficients (Sami, Xiaoxu's research)
 - · Possible hysteresis effects during spray changes
- Intelligent metallurgical length control
 - Temperature tracking does not guarantee shell profile
 - Need to balance temperature tracking versus metallurgical length control
 - System "envelope" to describe safe temperature setpoints?
 - Moving boundary control, optimal, or predictive controller design?

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Bryan Petrus, BG Thomas, & Joseph Bentsman 25