ANNUAL REPORT 2007 Mech

UIUC: June 12, 2007

Thermo-Mechanical behavior of the solidifying shell in a beam blank and ideal taper design

Seid Koric Ph.D.

Engineering Applications Analyst National Center for Supercomputing Applications-NCSA University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Seid Koric

Objectives

- Predict the evolution of temperature, shape, stress and strain distribution in the solidifying shell in a beam-blank continuous casting mold using our realistic ABAQUS-UDF based model
- Validate the model with comparison to plant measurements of mold heat flux, temperature, and breakout shell thickness.
- Evaluate current taper design by computing temperature, stress, and gap formation for typical plant conditions.
- Apply FE results to suggest improved designs.

Modeling Features for 2D Beam Blank

- Include complex geometries of mold and shell
- Incremental coupling of heat transfer & stress
- Austenite and delta-ferrite viscoplastic constitutive laws integrated in UMAT Material Nonlinearity.
- Temperature-dependant material properties for 0.07 %C steel grade – Nonlinear Material Properties.
- Coupled interfacial heat transfer (GAPCON)
- Mold-shell contact (friction coefficient 0.1)
- Ferrostatic pressure (DLOAD)

Interfacial Gap Heat Transfer

- The Abaqus main code supplies GAPCON with a calculated gap.
- GAPCON models heat transfer across interfacial gap.

Realistic Plant Data

Breakout shell that started 457 mm bellow meniscus

Water Temp. Measurements Water Heat Balance

Copper thermal conductivity 350W/mK

	Water Flow	Inlet temp	Outlet temp	Flow velocity	Heat loss
	(kg/s)	(°C)	(°C)	(m/s)	$(10^{3}W)$
Front	43.34	31.87	34.91	9.73	551.3
Back	46.04	31.87	34.78	10.34	561.1
Left	14.77	31.87	37.23	7.79	331.8
Right	15.00	31.87	36.96	7.91	319.6
Total	119.16				1763.8

 $\begin{array}{lll} \mbox{Wide face:} & T_{ref}=33.35^{\circ}C &, & h=45\mbox{kW/m}^2\mbox{K} \\ \mbox{Narrow face:} & T_{ref}=34.48^{\circ}C &, & h=34\mbox{kW/m}^2\mbox{K} \end{array}$

Temperature and Heat Flux Histories

- Mid WF, NF, and Mid. Flange have uniform flux and temperature histories
- Flange Corners are quickly shrinking causing sharp flux drops
- Left Flange Corner has the highest temperature due to a large gap which is increasing its interfacial gap heat resistance
- As shoulder gaps grow below breakout distance, the flux is dropping and shell overheats and getting even thinner there.

Parametric Study of Shoulder Flux: No Flux Drops with Thicker Powder compensating for air gaps !

Original Flange Taper: 2.33mm Enlarged Flange Taper: 3.37mm Original Powder Thickness: const. 0.1 mm Thicker Powder: a function 0.4 to 0.7 mm

- Both Tapers, Thicker Powder
- Enlarged Flange Taper, Original Powder
- Original Flange Taper, Original Powder

[MW/m²] 2.80 2.40 3.00 1.60 1.60 0.80 0.40 0.00 10.00 20.00 30.00 40.00 Time [sec]

Beam Blank Simulation Conclusions

- This thermo-mechanical model is capable of evaluating the simultaneous development of temperature, stress, strain and deformation in a 2D section of a continuous casting beam blanks with complex geometry.
- The results compare favorable with the in-plant measurements of breakout shell thickness, TC temperature, and heat balance on cooling water
- Mold at Mid. Flange is pushing on the shell, causing shell to bend at shoulder and to open a gap there.
- The mechanism of shoulder failure triggered initially by a thinner shell under combined thermo-stress conditions and later accelerated by a shoulder gap opening
- Hoop shoulder stress results are showing expected compression on the surface and tension close to the solidifying front
- The inelastic strain in the mushy zone, can be extracted from these results and used with the proper fracture criteria to predict hot-tear cracks.
- Optimum taper would require less taper at flange and more at shoulder with thicker powder layer !

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Seid Koric 25

Current and Future Work

- Add realistic mold distortion data from a separate 3D Beam Blank mold model.
- Improve 2D coupled model with the channel details on the mold side.
- Perform more parametric studies with the improved 2D coupled model to exactly determine ideal taper shape
- Extend model to other geometries

Acknowledgments:

- Prof. Brian G. Thomas
- Clayton Spangler, SDI
- Chungsheng Li, Hong Zhu, Kun Xu, and Lance Hibbeler former (and current) UIUC students
- National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Seid Koric 27