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Approaches to Secondary 
Cooling Control

1) Manual control:
– Operator sets of water flow rates
– Difficult at high casting speeds when response times must 

be short

2) Casting-speed-based control:
– Set water flow rates according to casting speed
– Results in non-optimal cooling during transient conditions

3) New Software-sensor-based control:
– Create “software sensor,” an accurate, real-time 

computational model to base control on
– Conventional feedback control has not yet been 

successfully implemented due to unreliability of optical 
pyrometer sensors.
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System Architecture
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System Overview
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CON1D: Overview

• Fundamentally based 
transient finite-difference 
model:

• CON1D predicts:
– shell thickness

– temperature distribution

– total heat removal

– heat flux profiles

– mold water temperature 
rise (to match 
measurements)
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CON1D: Application

• CON1D program:
– runs through entire 

caster in ~ 0.5 s

– predicts temperature 
and other phenomena 
for only one slice at a 
time

– we need the 
temperature profile of 
the whole slab

• Solution: multiple slices

Center-line view of caster

I shaped domain

(along centerline of slab)
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CONONLINE Display
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4 x 1 + 3 x 2 = 
10 controllers
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• Zone-based design: 10 subcontrollers, one for each 
spray zone

• Controller Algorithm: At each second of time:

1. Obtain surface temperature profile from CONONLINE. 

2. For all 10 zones: 
i. Compute the zone-based surface temperature average Tavg

for current zone. And form the tracking error Terr = Tavg – Tsp

ii. Use Terr to compute the water flow rate command = 
Nominal_flow + Δflow(t),

3. Send all water flow rate commands to CONONLINE, Caster, 
and Monitor
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Improvements to Controller

• Anti-windup
– Actuator saturation can lead 

to windup of integral 
controller

– Simple anti-windup scheme 
added

• Optimal/Adaptive control 
law development
– In progress
– Adaptive control laws have 

been designed for 1-D heat 
equation with spatially 
varying parameters

• Metallurgical length (ML) 
control
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Transient ML Control

• Prevent overshoot of metallurgical length (ML):
– A small amount of ML overshoot (0.1m) results under 

good temperature control

– Can trade the performance of temperature control  for 
metallurgical length control by temperature setpoint
conditioning

– Requires steady state ML  within bounds

– For 6th, and 7th spray zones, 

•
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Transient ML Control: 
Performance

• Metallurgical length overshoot eliminated
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Intelligent ML Control

• Transient control depends on setpoints
being “safe” conditions 

• Open problem: ensuring metallurgical 
length behavior automatically
– Conflict between setpoint tracking and 

metallurgical length tracking?

– “Envelope” for system: known safe running 
conditions hard-coded into controller?

– Moving boundary control of Stefan problem?
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Setpoint Generation

• From Nucor: spray water flow rate set 
points
– Empirically based, from past experience

– Casting-speed-dependent

• Convert to surface temperature profiles
– Output from CON1D becomes temperature 

setpoint

– Conditions:
• 9 Casting speeds

• 8 Spray patterns
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Temperature setpoints
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Problems With Setpoints

• Type of setpoints
– Should setpoints be based off spray tables or desired 

temperature profiles?

• Casting speed variations
– Should different speeds have different temperature profiles?

• Mold heat flux variations
– Setpoint generator assumes heat flux equal to standard 

conditions (eg from Ciccuti et al)

– But, in practice, mold heat flux may vary
– How should model compensate?
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Simulation: Sudden Slowdown

– Compare
• Casting-speed-based controller: setting water flow rate 

proportional to casting speed

• Model-based PI controller: speed-proportional setpoints

• Model-based PI controller: speed-independent setpoints
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Slowdown: Casting-speed-based 
Controller

Sped up 12x
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Slowdown: PI Controller, Speed-
dependent Setpoints

Sped up 12x
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Casting Speed

• For 2 – 5 m/min, 
temperature 
setpoints are 
approximately 
constant

• Suggests that 
constant 
temperature 
setpoint is desired

• Take representative 
casting speed as 
setpoint for all 
casting speeds
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Slowdown: PI Controller, Speed-
independent Setpoints

Sped up 12x
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Slowdown: Comparison

• Casting-speed-based 
controller causes 
temperature overshoot

• Transient behavior is 
tracked closer with 
model-based controllers

• Steady-state error is 
caused by mold heat 
removal rate variatons

Steady state error

Inner radius surface temperature at 
end of containment
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Simulation: Mold Heat Removal 
Rate Drop

– Mold heat removal rate (MHRR) on inner radius, 
broad face drops 10% at 30 seconds

– Compare
• Casting-speed-based controller: setting water flow rate 

proportional to casting speed
• Model-based PI controller: Fixed setpoints
• Model-based PI controller: Mold-exit-temperature-

dependent setpoints
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MHRR Drop: Casting-speed-
based Controller

Sped up 10x
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MHRR Drop: PI Controller, Fixed 
Setpoints

Sped up 10x
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Mold Heat Removal Rate Drop: 
Comparison

• Fixed setpoint controller 
tries to hold 
temperature constant 
despite change in mold 
exit temperature

• Can overcool strand 
and create detrimental 
transients in top regions 
of caster – even worse 
if mold heat flux varies 
continuously

Inner radius surface temperature at 
end of 3rd spray zone
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Vary Setpoints with 
Mold Exit Temperature

• Run setpoints for ±
15%, ± 30% of 
estimated heat flux

• Interpolate setpoints in 
first three zones based 
on mold exit 
temperature

• Keep standard 
setpoints for last four 
zones
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MHRR Change: PI Controller, 
MET-dependent Setpoints

Sped up 10x
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Organizing Setpoints

• First method
– Calculated from spray tables
– Stored as 2D index: speed and pattern
– Setpoints linearly interpolated with casting speed

• Current method
– Calculated from spray tables
– Stored as 3D index: speed, pattern, mold exit temperature
– Typical casting speed used to calculate setpoint
– Allowing for different mold exit temperatures avoids over-

responding at top of caster

• Next method
– Stored as temperature setpoints
– Allow for operator to change setpoints online
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Shared Memory Setpoints
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Simulation: Spray Pattern 
Change

– Change from pattern 6 (low-sprays, high 
temperatures) to pattern 3 (high-sprays, low 
temperatures) at 30 seconds

– Compare
• Casting-speed-based controller
• Model-based PI controller: speed-independent 

setpoints, interpolated by mold exit temperature

Pattern 6 Pattern 3
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Spray Pattern Change: Casting-
speed-based Controller

Sped up 10x
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Spray Pattern Change: Model-
based Controller

Sped up 10x
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Spray Pattern Change: 
Comparison

• Spray pattern changes 
at 30 seconds from 6 
(low sprays) to 3 (high 
sprays)

• Model-based controller 
tracks temperature more 
quickly than casting-
speed-based controller

• However, metallurgical 
length still takes time to 
respond to spray change

Inner radius surface temperature at end of containment

Metallurgical length
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Conclusions

• Control objectives must be carefully considered
– CONONLINE can track temperature setpoints well, 

but this does not guarantee metallurgical quality or 
prevention of whales (ML control)

– Choice of temperature setpoints is important, and is 
not always obvious

• Further work:
– Incorporate heat transfer coefficients from lab 

experiments and plant measurements to improve 
accuracy

• Huan’s work

– Develop off-line system to model plant separately 
from software sensor and study effect of differences

– Improved control logic
• Optimal or adaptive control?


