

Dimensions and Parameter of Two Oxidizer Vessel Designs

	Design I	Design II		
Dimension of the vessel	φ1.4m, H2.0m	φ1.5m, H1.65m		
Inside volume of the whole domain (m ³)	3.393	3.636		
Inner diameter of inlet (mm)	140	120		
Steel flow rate (tons/hour)	99.5	99.5		
Theoretical residence time of the molten steel (s)	950	1018		
Inlet velocity (m/s)	0.232	0.3158		
Inlet turbulent energy (m ² /s ²)	3.1×10 ⁻⁴	5.619×10 ⁻⁴		
Inlet turbulent energy dissipation rate (m ² /s ³)	4.0×10 ⁻⁴	1.140×10 ⁻³		
Argon gas flow rate at 300K (m ³ /min)	0.49	0.49		
Bubble size at 1900K (mm)	36.4	31.0		
Number of porous plug at the bottom	2	3		
Total bubble injection at 1900K (#/s)	864	1406		
Inclusion density (kg/m ³)	5000	5000		
University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lifeng Zhang 6				

Fluid Flow Characteristic in the Vessel

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lifeng Zhang 13				
Volume-averaged velocity magnitude	0.241 m/s	0.171 m/s		
Number of bubbles at pseudo- steady state	1075	1223		
Volume-averaged turbulent energy dissipation rate (m ² /s ³)	5.46×10 ⁻²	2.15×10 ⁻²		
Volume-averaged turbulent kinetic energy (m^2/s^2)	2.76×10 ⁻²	1.31×10 ⁻²		
Average rising speed of bubbles	1.61m/s	1.90m/s		
Average residence time of bubbles	1.24s	0.87s		
	Design I	Design II		

Mixing Time and Steel Residence Time

Metals Processing Simulation Lab

Lifeng Zhang

25

- Reactions also depend on
 - interfacial area between the steel and gas
 - emulsification between steel and slag
 - thermodynamics

University of Illinois at Urbana-Champaign

asting

- Of greater importance is to
 - avoid short circuiting flow
 - transport the inclusions to the top slag

Cortegad	Mean Residence Time of 5000 Inclusions Each Size						
	Size	Design I	Design II				
	50µm	121.6	49.8				
	100µm	100.3	46.8				
	300µm	70.2	27.2				
Inclusions removed more easily in Design II than Design I							
University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lifeng Zhang 30							

Residence Time and Mixing time (s)

	Theoretical residence time	Residence time of >50µm inclusions (5000kg/m ³)	Residence time of bubbles (1.6228 kg/m ³)	Mixing time				
Design I	950	70.2-121.6	1.24	90s				
Design II	1018	27.2-49.8	0.87	110s				
 Smaller bubbles improve inclusion removal and mixing, favoring Design II over Design I for the current continuous steelmaking process. Bubble size: Design II: 31.0mm; Design I: 36.4mm 								

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Lifeng Zhang

33

