

Authors	Experimental place	Oscillation conditions	Oscillation parameters related to powder penetration
K. Kawakami <i>et al.</i> (1981)	Conventional slab caster	Sinusoidal oscillation mode	$\mathbf{Q} = (\mathbf{k}_1 \cdot \mathbf{t}_p \cdot \mathbf{f}) / \mathbf{V}_{\mathbf{C}}$
M. Suzuki <i>et al.</i> (1991)	Conventional slab caster designed and constructed for hot direct rolling	Sinusoidal & Non- sinusoidal oscillation mode	$q_{\rm P} = (k_2 \cdot t_{\rm P})$
OD. Kwon <i>et al.</i> (1991)	Conventional slab caster	Sinusoidal oscillation mode	$\mathbf{q}_{\mathbf{P}} = (\mathbf{k}_3 \cdot \mathbf{t}_{\mathbf{P}})$
K. Tsutsumi <i>et al.</i> (1998)	Laboratory scale experiment	Sinusoidal & Non- sinusoidal oscillation mode	$\mathbf{q}_{\mathbf{P}} = (\mathbf{k}_4 \cdot \mathbf{t}_{\mathbf{P}})$
T. Araki and M. Ikeda (2000)	Conventional slab caster and a pilot slab caster	Sinusoidal & Non- sinusoidal oscillation mode	$Q = 0.047 + 0.202 * (R_{NA}^{0.3} * t_{p}^{0.5})$
Powder consumpt	ion rate per unit area (kg/m²),	$q_{\rm P}$: Powder consumption rat	te per one cycle (g/m \cdot cyle),

Authors	Used materials	Oscillation conditions	Observations
K. Tsutsumi et al. (2000)	Metal: Sn-5% Pb alloy Quasi-powder : Stearic acid	Sinusoidal & Non-sinusoidal	 Most shapes of oscillation mark were observed as the overflow type Mold powder flowed into the aperture between mold and solidified shell during t_p and t_n
Y. Itoh <i>et al.</i> (2000)	Metal: Cu alloy Powder : CaO-SiO ₂ -Na ₂ O- B ₂ O ₃ system	Sinusoidal & Non-sinusoidal	- The molten slag inflow from the meniscus into the flux channel was clearly visualized and observed mainly during the period of the t _n

Current study: measure and predict	
powder consumption and OM profiles	

Current study: measure and predict powder consumption and OM profiles										
Steel composition of ultra-low carbon steel (wt. %)										
С	Mn	Si	Р	S	Cr	Ni	Cu	Ti	Al	
0.002	0.08	< 0.005	0.015	0.01	0.01	0.01	0.01			

Mold powder composition and properties

Chemical	Basicity	SiO ₂	CaO	MgO	Al ₂ O ₃	TiO ₂	Fe ₂ O ₃	MnO ₂	P ₂ O ₅	Na ₂ O	K ₂ O	F	B ₂ O ₃	Li ₂ O
composition (wt. %)	1.10	38.6	42.3	0.9	6.3	0.19	0.36	0.03	0.03	3.6	0.1	7.1	0	0.4
Properties	Solidif. Temperature (°C)				Softening Temperature (°C)			Melting Temperature (°C)			Viscosity at 1300 °C (Poise)			
		1149			1170)		118	0			3.2	l	
University of	University of Illinois at Urbana-Champaign						Metals Processing Simulation Lab				Ho-	Jung	Shin	8

Test Conditions

keep casting conditions constant for ~4-6 250-tonne heats (~4 hours) per test
Slab thickness: 230 mm; Slab width: 1300 mm; Casting speed: 1.45 m/min

	Stroke (mm)	Frequency (cpm)	Modification ratio for non-sinusoidal mode (%)	Negative strip time (sec)	Positive strip time (sec)	Measured OM depth (mm)	Consumption rate of mold flux (kg/m ²)			
Test 1	6.4	158	24	0.107	0.270	0.246	0.247			
Test 2	5.0	145	0	0.115	0.296	0.393	0.232			
Test 3	5.0	174	12	0.100	0.241	0.309	0.225			
Test 4	5.0	203	24	0.081	0.205	0.292	0.253			
Test 5	6.0	121	12	0.127	0.353	0.353	0.223			
Test 6	6.0	145	24	0.110	0.299	0.343	0.229			
Test 7	6.0	169	0	0.121	0.224	0.258	0.230			
Test 8	7.0	104	24	0.139	0.426	0.308	0.248			
Test 9	7.0	124	0	0.154	0.324	0.338	0.208			
Test 10	7.0	145	12	0.126	0.276	0.331	0.211			
Universi	University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Ho-Jung Shin 9									

