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Pitch of OM

Hook-type OMs are generally deeper and 
can be distinguished visually

Types of oscillation marks

POSCO casting trials on ultra-low carbon slabs (2004):
• Typical OM depth = ~0.2 – 0.6 mm
• OMs with hooks > 98% on narrow face for different casting conditions (12 out of 13)

= 100% on wide face (7 out of 10) – 70-90% (3 out of 10)

Szekeres, Iron & SteelMaker, 1996
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• ~20-35% straight hooks (wide + narrow faces) based on 13 POSCO trials in 2004
• OMs with curved hooks are generally deeper (~1.5 times) 
• Scarfing is usually done to remove hooks & related defects
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OM/Hook formation more severe with 
decreasing carbon content
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Badri et al., Met. Trans. B, 2005
Suzuki, CAMP-ISIJ, 1998

• Ultra-low carbon steels have deeper OMs and are more prone to form hooks
• Higher solidus (1535 °C ↔ 1500 °C for high carbon steels) & 

thinner mushy zone (15 °C ↔ 50 °C for high carbon steels)
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OM/Hook formation in meniscus region

• Combined effect of heat transfer, solidification, mechanical interactions & fluid flow
• Meniscus region: extends to ~10 mm below the metal level
• Influencing events last for a very short time-span but occurs periodically
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Influential event #1

Heat transfer between shell and mold:
Heat is conducted into the mold via liquid flux & re-solidified flux layers
• Governed by size & properties of interfacial gap (contact resistance)
• Dynamic mold distortion can lower contact resistance locally

Li and Thomas, Private Communication, 2005
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Periodic rise in heat flux near meniscus

Badri et al., 
Met. Trans. B, 2005

NST NST

Measurements for ulta-low carbon steel in a laboratory scale simulator at CMU

Rise in heat flux 
attributed to 
release of latent 
heat (meniscus 
freezing)
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Link between periodic rise in heat transfer 
& OM formation

Badri et al., 
Met. Trans. B, 2005

Measurements for ulta-low carbon steel in a laboratory scale simulator at CMU

Oscillation marks 
on a ultra-low 
carbon steel slab

Periodic rise in heat 
flux during NST
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Influential event #2

Meniscus shape:
• Shape determined by balance of surface tension, pressure & gravity forces

(equilibrium shape can be predicted by Bikerman’s equation)

• Strong function of sulfur content of steel

• Pressure forces due to mold oscillation is transmitted to meniscus via flux 
layer
(both temporal & spatial variations)
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Equilibrium meniscus shape
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x = distance perpendicular to the mold wall in mm
Z = distance along the mold wall in mm
γ = surface tension between liquid steel and vapor (or flux) in N m-1

ρsteel = density of liquid steel = 7000 kg m-3

g = gravitational acceleration = 9.81 m s-2

From Bikerman, Physical Surfaces, Academic Press, 1970 
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Effect of %S on surface tension

Lee and Morita, ISIJ International, 2002
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Meniscus shape – affected by 
sulfur content
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Dynamic flow effects at meniscus
(due to mold oscillation)
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a sharp angle 
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shape is flat 
and angular 
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smoothly 
curved

Meniscus is 
elevated and 
bulged out 

Negative strip

Increasing positive flux pressure:
• Brings meniscus close to mold

• Facilitates sudden freezing

Increasing negative flux pressure: 
• Pushes meniscus away from mold

• Meniscus Bulging

Increasing positive flux pressure:
• Brings meniscus close to mold

• Facilitates sudden freezing

Increasing negative flux pressure: 
• Pushes meniscus away from mold

• Meniscus Bulging

Tanaka and Takatani, 
CAMP-ISIJ, 1989
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Influential event #3

Meniscus Freezing:
Partial solidification of meniscus can occur in 
presence of a water-cooled mold (Saucedo, 1991)

• Preservation of instanteneous frozen shape

• Rapid cell growth in the presence of under-
cooled liquid (heterogeneous nucleation)

• Incorporated into OM mechanisms
(Takeuchi & Brimacombe in 1984)

Yamamura et al., ISIJ 
International, 1996
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Influential event #4

Fluid flow effects:
• Steel jets perturb free surface (standing waves)

• Level fluctuations due to chaotic turbulence & presence of particles/bubbles
(buoyancy forces)

• Abrupt changes in operating conditions (e.g. release of nozzle clog)
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Local level fluctuations

Lai et al., ISS Steelmaking Conference, 2000
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Influential event #5

Delivery of local superheat:
• Distributed via metal jets & follows the fluid flow patterns to reach meniscus
• Meniscus typically retains ~30% of total superheat available (no freezing)

0 20 40 60 80 100
0

50

100

150

200

250

Casting width: 1300 mm
Center of narrow face

 

 

S
up

er
he

at
 fl

ux
 (M

W
/m

2 )

Distance below meniscus (mm)

 Casting speed: 1.2 m/min
 Casting speed: 1.46 m/min
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Zhang and 
Thomas, POSCO 
Report, 2004
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Influential event #6

Shell tip deformation:
Shell tip may move away or towards the mold surface due to thermal stresses
(temperature gradients) and/or mechanical effects

• Solidification mode (large shrinkage is associated with δ→γ transformation)

• Local shell thinning due to presence of air gap & OMs (coupled effect)

• Mechanical interaction between shell tip and solid rim (negative strip period)

• Sticking of shell tip to mold wall in absence of flux (hot tearing)

• Sudden level fluctuation exposing shell interior to flux
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Level drop effect: shell bending

B.G. Thomas and H. Zhu, 
Solidification Science & 
Processing Conference, 
1996

• During level drop:
Shell interior exposed to flux
Left edge of shell cools rapidly
Shell tip bends away from mold

• After level rise:
New shell forms on existing solid
Bending of shell increased further
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OM formation mechanism I

Healing: (i) Sato (Proc. of NOH & BOS Conf.), 1979
(ii) Szekeres (Iron & Steel Engineer), 1996

Tearing: Savage and Pritchard (Iron and Steel), 1954

Steel solidifies first against mold wall forming a secondary meniscus
& attaches to shell during negative strip time



11

University of Illinois at Urbana-Champaign           • Metals Processing Simulation Lab          • J. Sengupta 21

OM formation mechanism II

Shell 
bending 
during 
negative 
strip

Liquid 
steel 
overflow 
during 
positive 
strip

Hook
OM

Shell distortion (away from mold) & subsequent overflow

(i) Schwerdtfeger and Sha (Met. Trans. B), 2000: Beam bending theory
(ii) Thomas and Zhu, 1996: Level drop causes surface depressions
(iii)Emi et al. (Proc. of NOH & BOS Conf.), 1978: Solid flux rim effect
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OM formation mechanism III

Meniscus 
freezing 
during 
negative 
strip

Liquid 
steel 
overflow 
during 
positive 
strip

Hook
OM

Meniscus freezing & subsequent overflow

(i) Takeuchi and Brimacombe (Met. Trans. B), 1984: Metallography
(ii) Saucedo (SteelMaking Conf. Proc.), 1991: Metallography
(iii)Putz et al. (Steel Research), 2003: Heat transfer/Fluid flow model
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I. Solidification of curved liquid steel meniscus 

II. Solidification of steel shell against the mold wall and then
subsequent distortion due to thermal stress / pressure forces

Re-evaluate mechanisms by:
• Analysis of hook metallography (POSCO/Postech)
• EBSD analysis of hooks
• Meniscus shape calculation

• Thermal-stress analysis of initial solidification

Propose new mechanism of hook formation

Two mechanisms for hook formation have 
been considered in this study
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Hook characteristics

Hook depth, D = 1.82 mm
Hook height, H = 5.37 mm
Hook length, L = 5.65 mm
Hook thickness, T = 0.78 mm
OM depth, d = 0.228 mm
Final hook angle, θ = 69o

Ultra low carbon steel (0.003% C)
POSCO Sample No.: 
B58077-02-2 No.1-1 (Curved hook)

1 mm
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Hook shapes: Case I

Ultra low carbon steel:
0.003C-0.009S-0.08Mn-0.013P-0.039Al-
0.047Ti-0.01Ni-0.01Cr-0.01Cu

Casting conditions:
Casting speed : 1.42 m/min
Frequency: 155 cpm
Stroke: 6.34 mm
Superheat: 25 oC

POSCO Casting No.: B58077-02
Samples taken within ~100mm of slab length
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Ultra low carbon steel:
0.003C-0.009S-0.08Mn-0.013P-0.039Al-
0.047Ti-0.01Ni-0.01Cr-0.01Cu

Casting conditions:
Casting speed : 1.61 m/min
Frequency: 181 cpm
Stroke: 6.82 mm
Superheat: 27 oC

POSCO Casting No.: B58075-06
Samples taken within ~100mm of slab length
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Variations in hook angle, and meniscus 
shape before & after “meniscus overflow”

Different shapes of meniscus: (a) almost straight to (c) very bent
Different shapes of overflow region:  (a) shallow contact angle, (b) 
near-vertical contact angle, & (c) strange angle and shape

(a) (b) (c)
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A

B

Bubble A entrapped by frozen 
meniscus but
Bubble B flows along with the 
overflowing liquid steel

Debris trapped on both sides of the line of hook origin:

Below the line of hook origin: particles flow up with the steel, 
reach the meniscus, but do not get entrained into slag layer

Above the line of hook origin: particles flow along with the 
overflowing liquid steel when it overflows the meniscus

Hooks with particles showing capture 
before and after “meniscus overflow”
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Features of a hook tip

Fractured 
hook tip

Brittle fracture

Actual position of 
hook and fractured 

tip on slab

Original position of 
fractured tip prior to 

brittle fracture

Location of 
brittle fracture

Location of 
melting after 

fracture
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Truncated hooks

Fractured 
hook tip

Truncated 
hook

Truncated hook and 
unmelted fractured tip

Truncated hook 
(Fractured tip melted away)
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• Random orientation of dendrites → Heterogeneous nucleation
• Fine dendrite arms near origin line → rapid solidification of undercooled liquid
• Coarser dendrite arms → Lower temperature gradient 

→ long time surrounded by liquid before solidification continued (ripening)
• Large sudden change of growth direction → Movement of fractured hook tip

Cell growth near hook

Solidification inward 
from frozen meniscus

Solidification within the 
liquid overflow region 
towards the mold wall
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SEM Images

1 mm

100 µmMicrograph
from optical 
microscope Backscattered SEM image Backscattered SEM image with 

70 degrees tilt

200 µm

Hook shape transferred
(to scale)
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Electron Back Scattered Diffraction 
(EBSD) Map near hook region

100 µm

Grains can be identified on the sample by superimposing an EBSD map containing 
grain orientation information on the Backscattered SEM image

Backscattered SEM image

200 µm
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Quantification of grain misorientation

100 µm 300x

EBSD postprocessor software can provide local grain misorientation data
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Location of line of hook origin on EBSD 
image compares well with micrograph

200 µm

OVERFLOW 
REGION

LINE OF 
HOOK 

ORIGIN

FROZEN 
MENISCUS
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v

x
z

y

Solidifying
steel shell

Position of 
meniscus
z = v x t

CON2D Finite-element model to compute 
thermal distortion of solidifying steel shell

Simulation Details 
• Domain Size: 3 mm x 30 mm
• 6 noded triangular elements
• Mesh resolution: 0.1 mm x 0.5 mm

Assumptions:
• Effect of ferrostatic pressure is ignored
• No constraint at the mold edge
• No mold taper, slag, oscillation, friction
• Drop in heat transfer due to air gap ignored
• Level is assumed to drop suddenly
• No kinetics & undercooling effects
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Simulation conditions

1.5 s (0.001 s time step size)
1.2 s
0.8 s (for 16, 8, 5 & 3 mm)
1000 °C
250 °C
1.2 m/min
30 °C
14.6 °C
1533.9 °C
1519.3 °C

0.003C-0.009S-0.08Mn-0.013P-0.039Al-
0.047Ti-0.01Ni-0.01Cr-0.01Cu

Ultra-low C steel

Sudden level rise at
Sudden level drop at

Total time for analysis

Tflux

Tmold

Casting speed
∆Tsuperheat

∆T
Tliquidus

Tsolidus

Composition
Grade
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Thermophysical properties
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Thermal conductivity at T > Tliquidus = 259. 35 Wm-1 (~6.65x)
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Mechanical properties
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Constitutive behavior
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Heat Transfer Calculations
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Shell deformation during level fluctuation
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Final distorted shape for different level drop 
distances (0.3s after overflow over shell tip)
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Jog

Fredriksson and Elfsberg, 
Scandinavian J. of Met., 2002

Shell

Jog formation
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Comparison between hook and distorted 
shell shapes

Meniscus
Overflow

Deformed shell 
after level rise

Mold 
surface

∆u = +0.35 mm
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level drop 
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level drop

Measured 
hook shape

Mechanism of hook formation due 
to shell distortion associated with a 

level drop event Shell distortion will affect OM & hook 
formation during large level drops

POSCO Casting 
No.: B58077-02
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Hook depth measured from POSCO 
samples (2004 data)

0.532.611.6056.044.028225051B30959-55

0.553.211.7961.538.532205151B30959-51

0.421.911.0560.439.629194848B30959-02

0.533.211.1267.332.735175355B30957-01

0.521.581.0365.434.61792626B26848-54

0.622.051.0988.911.12432727B26848-04

0.212.100.9677.122.937114848B31077-54

0.471.921.0682.417.64295152B31077-04

0.381.831.1170.229.833144748B31075-05

0.341.490.7756.843.225194451B31075-04

0.291.600.7375.424.646156162B32793-52

0.441.300.8380.919.13894749B32793-05

0.391.530.8377.122.937114849B32793-02

Min hook 
depth 
(mm)

Max hook 
depth 
(mm)

Mean hook 
depth 
(mm)

% Curved 
hooks

% 
Surface 
hooks

Curved 
hook #

Surface 
hook #

Hook 
#

OM #Sample
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Proposed mechanism for hook formation

HOOK FORMATION

CURVED HOOK

STRAIGHT HOOK

Mechanism:
Meniscus freezing &

Liquid overflow in the 
presence of uncooled liquid 
during negative strip time

Mechanism:
Shell distortion during 

negative strip time
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Development of a detailed 
hook formation mechanism

• Events dictating formation of OMs and hooks are complex, 
inter-dependent and transient

• Plant experiments cannot reveal detailed steps that lead to final 
microstructure and morphology

• Development of a comprehensive computational model is a 
daunting task

• Alternative methodology:
- Combine existing modeling results & plant observations
- Construct a series of schematics illustrating the mechanism
- Will not predict formation of hooks, but will lead to model 
development
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Three hooks observed on a 
POSCO slab

8 
m

m
8 

m
m

Hook #3

Hook #2

Hook #1

I. Steel Composition: 
C (0.003%) - Mn (0.08%) - Si (0.005%) - P (0.015%) –  
S (0.01%) - Cr (0.01%) - Ni (0.01%) - Cu (0.01%) –  
Ti (0.05%) - Al (0.04%) 
  
II. Steel Properties: 
Liquidus temperature (in °C): 1533 
Solidus temperature (in °C): 1517 
Density of liquid steel (in kg m-3): 7000 
Surface tension at 1550 °C (in N m-1): 1.6 
  
III. Slag Properties: 
Solidification temperature (in °C):  1149 
Melting temperature (in °C): 1180 
Viscosity at 1300 °C (in Poise): 3.21 
  
IV. Casting conditions:  
Casting speed: 1.394 m min-1 

Frequency of mold oscillation: 174 cpm 
Stroke of mold oscillation: 5.89 mm 
Theoretical pitch for oscillation  marks 
(speed/frequency): 

 
8.01 mm 

Superheat: 32 °C  
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Objectives

I. Graphically track the positions of the 
following on a Cartesian space for one mold 
oscillation cycle:
Meniscus, mold, solid/liquid flux interface, 
shell, OM/Hook mark nos. 2 & 3

II. Using above positions and final 
morphology of the cast slab sample as 
templates, events leading to formation of OM 
& hook mark no. 1 will be identified

Solid flux rim

Liquid 
flux 

channel

Shell

Liquid 
steel

Meniscus

Cartesian space 
under scrutiny
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Equilibrium shape of meniscus
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Fe-0.001 pct STemperature = 1550 oC
Density of liquid steel =  7000 kg m-3

Assumptions: I. Far field metal level remains unpeturbed at all times (z = 0 mm) 
II. x = 0 mm corresponds to mold wall
III. Dynamic effects active for x < 35 mm

Extends to far-
field metal level
(towards SEN)

MENISCUS 
REGION

SHELL

LIQUID 
STEEL
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Mold & shell velocity
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Mold position
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Mold position w.r.t 
meniscus level

OM#2 position w.r.t. 
meniscus level

Meniscus level
z = 0 mm

LABORATORY FRAME

Casting speed = 23.23 mm/s (1.394 m/min)
Stroke = 5.89 mm
Frequency = 2.90 cps (174 cpm)

NEGATIVE 
STRIP

(b)

Meniscus shape is assumed to be in equilibrium at tstart = 0 s
• Mold acceleration is zero → Inertia force is absent at this instant
• Positive flux pressure built-up during NST has been dissipated completely
• Hence, only surface tension forces will determine the shape of meniscus

At tstart = 0 s:
Position of OM #2:
6.4 + 8 = 12.4 mm

Position of OM #3:
12.4 + 8 = 20.4 mm

Position corresponds 
to z = 0 mm & lines 
up with far-field 
metal level
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Profile of solid flux rim

Takeuchi et al., 1983

• Profile of solid rim above 
the meniscus has been  
reported in literature, with: 
Solidus for steel = 1399 oC 
(actual 1517 oC)
Solidus for slag = 1130 oC
(actual 1180 oC)
Superheat = 5 oC

• The shape has to be modified 
to correspond to actual  
superheat of 20 oC
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Evolution of shell thickness 
predicted by CON1D
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Reduction in shell thickness due to OM

From B.G. Thomas et al., 
Sensors & Modeling in Mat. Processing, 1997

OM area for OM nos. 1, 2 & 3:
(0.2 + 0.16 + 0.24)/0.236 
= 2.54 mm2/cm at ~20 mm 
below meniscus

Based on literature, about ~16% 
reduction in shell thickness 
should be observed at each 
oscillation mark.
(Actual for OM#3 = 17%)
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Summary of events in one oscillation cycle
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1. Mold moves upwards
2. Flux channel above 
meniscus opens up
3. Liquid flux is sucked 
into this gap
4. Suction rate decreases as 
mold goes to maxima
5. Meniscus shape bulges 
up & away from mold

1. Mold moves downwards
2. Flux channel closes up gradually
3. Liquid flux is pumped out of above
4. But it is also pumped into the flux 
channel along mold edge
5. Meniscus shape flattens out
6. Heat flow into mold increases

Freezing of meniscus

Meniscus overflow begins

Rapid growth 
of  new hook

Growth of new 
hook completed

Brittle fracture of 
hook tip

1. Mold moves upwards again
2. Flux channel opens up again 
3. Intake of liquid flux is increased
4. Meniscus is pulled towards its 
equilibrium shape

Meniscus has 
equilibrium shape

Equilibrium shape of 
meniscus is restored as a 
new cycle of mold 
oscillation begins

New shell begins 
to grow above 
hook & OM is 
formed

95
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Experimental observations on a Sn-Pb
alloy/stearic acid based casting simulator

Sudden decrease in ys during NST 
caused by liquid steel overflow over a 

hook & subsequent solidification

Sudden rise in tracer velocity during 
PST caused by creation of additional 
space in tracer channel due to OM 

formation

Tsutsumi et al., ISIJ International, 2000
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Summary

I. A new mechanism of hook formation proposed based on:
- Analysis of hook micrographs & EBSD images
- Meniscus shape predictions by Bikerman equation
- Prediction of distorted shell shapes by modifying CON2D
- Comparison of hook shapes with both meniscus shapes and  

distorted shell shapes
(Most hooks match best with meniscus shape)

97
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Summary

II. Hook formation has been graphically animated & depicts:
- Change of meniscus shape during one oscillation cycle
- Menicus freezing during negative strip period
- Overflow of liquid steel over curved hook (frozen meniscus)

during negative strip period
- Hook formation & growth and subsequent fracture of tip

III. The new mechanism can satisfactorily explain the formation of 
oscillation marks and hooks in ultra-low carbon steel slabs
However, shell distortion can still play an important role during 
oscillation mark formation in pertectic steels.
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Shell distortions for different grades without any 
level fluctuation
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