ANNUAL REPORT 2005
Meeting date: June 1, 2005

Thermal analysis of CC mold and Calibration of CON1D

Sami Vapalahti, David Hodgson, Xiangyu Dai, Jianwei Hu & Brian G. Thomas

Department of Mechanical & Industrial Engineering
University of Illinois at Urbana-Champaign

Acknowledgements

• National Science Foundation
 – Grant NSF-GOALI DMI 01-15486
• Continuous Casting Consortium at UIUC
 (Nucor, Postech, LWB Refractories, Accumold, Algoma, Corus, Labein, Mittal Riverdale)
• National Center for Supercomputing Applications (NCSA) at UIUC
• Fluent, Inc., CFX, UIFLOW (P. Vanka)
• Other Graduate students, especially B. Zhao
Introduction to CON1D

• 2-D steady heat conduction in mold
• 1D transient conduction and solidification in shell:

$$\rho_{\text{steel}}C_{\text{P,steel}} \frac{\partial T}{\partial t} = k_{\text{steel}} \frac{\partial^2 T}{\partial x^2} + \frac{\partial k_{\text{steel}}}{\partial x} \left(\frac{\partial T}{\partial x} \right)^2$$

CON1D – features special analysis of interface phenomena

• Mass balance and heat transfer in the interfacial gap:

Mass balance:

$$\frac{Q_{\text{slag}}}{\rho_{\text{slag}}} \times V_c = V_{\text{solid}} d_{\text{solid}} + \int_0^{d_{\text{solid}}} V_{\text{liquid}} dx + V_c \bar{J}_{\text{osc}}$$

Heat transfer:

$$q_{\text{int}} = h_{\text{gap}} (T_s - T_{\text{mold}})$$
CON1D - Applications

Input
- simulation parameters
- casting conditions
- mold geometry
- steel properties
- cooling water properties
- mold flux properties
- oscillation marks parameters
- spray zone variables

Output
- temperatures
- mold and TCs
- shell surface and interior
- cooling water
- shell thickness
- heat flux leaving the shell
- flux layer thickness & fracture
- Mold friction
- ideal mold taper

CON1D – example output

(Algoma Steel WF-I case)

Shell thickness

Mold Temperature

Mold Heat flux
CON1D – example output (Algoma Steel WF-I case)

Ideal Mold Taper

CON1D – example output (Algoma Steel WF-I case)

Surface temperature in mold and spray zones
TC prediction (useful for validation) needs calibration with 3-D model

- Example 3-D mold section analysis for offset

$q = 1.75 \text{ MW m}^{-2}$

M. Langeneckert, MS Thesis, 2001

Offset Calculation

$q = 1.75 \text{ MW m}^{-2}$

$T_{W} = 25 \degree \text{C}$

$h = 45 \text{ kW m}^{-2} \text{K}^{-1}$

$k_t = 364 \text{ W m}^{-1} \text{K}^{-1}$

$h_{fin} = 55.6 \text{ kW m}^{-2} \text{K}^{-1}$

all [mm], $d_{wch}=27$, $d_{ch}=18$

$w_{ch}=5$, $L_{ch}=13.5$

Thermocouple location, Temp = 99 \degree \text{C}
Case Study: Algoma funnel mold

- CON1D calculation for more accurate boundary conditions for hot and cold faces
- ANSYS calculations to investigate different cases:
 - Case 1: No thermocouple hole present in domain.
 - Case 2: Thermocouple hole included in domain.
 - Case 3: Thermocouple hole and the cooling effect of the TC wire are both modelled in the domain.
 - Other cases: show that mold thickness variations due to funnel have negligible effect on hotface and TC temps.

- Offset calculations with CON1D considering ANSYS case 2

Algoma: model domains
Algoma: 3-D mold temperatures

TC Temperature
(base of TC hole):
132.7°C (case 1)
138.95°C (case 2 & 3)

Simulation Conditions (Case 3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity of copper</td>
<td>372 W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Distance of thermocouple from hot face</td>
<td>14mm</td>
</tr>
<tr>
<td>Remaining faces of model</td>
<td>Perfectly insulated</td>
</tr>
<tr>
<td>Water Velocity in bored holes</td>
<td>8.7 m/s</td>
</tr>
<tr>
<td>Depth below meniscus (mm)</td>
<td>806</td>
</tr>
<tr>
<td>Heat Flux (MW m⁻²)</td>
<td>1.704</td>
</tr>
<tr>
<td>Water tube heat transfer coefficient (W m⁻² K⁻¹)</td>
<td>35.7748</td>
</tr>
<tr>
<td>Water temperature (°C)</td>
<td>28.31</td>
</tr>
</tbody>
</table>

Algoma Mold Temp.: Case 3

Temperature profiles along different paths, thermocouple hole with thermocouple wire
Case Studies: Algoma

- The difference in temperature profiles at 110, 400 and 800mm below meniscus
- Correlation between hotface temperature and heat flux

Small air gap between TC bead and mold greatly lowers TC temperature

Maintaing close contact between TC and mold wall is important
Case Studies: Algoma

- CON1D assumes rectangular cooling channels -> find way to match temperature with a round cooling channel (for same heat flux)
- Method found:
 - match the area of the cooling channels:
 - A_{circle} (14mm diameter) = $A_{\text{rectangle}}$ (12.4x12.4mm)
 - Keep same distance from hotface
 - Decrease mold thickness to 33mm

CON1D matches ANSYS for 3-D mold temperature calculations, so long as the mold thickness is decreased to 33.0 mm (from a range of thicknesses around funnel up to 105mm).

Offset = 1.9mm (meaning that TCs in CON1D should positioned at 12.1 mm below the hotface, which is 1.9mm closer to the hotface than actually occurs in the caster).
Case Studies: Nucor

- ANSYS calculations to investigate different cases:
 - Constant Q_{hot} and copper conductivity
 - $Q = 2500$ and 4000 kW/m2
 - Temperature dependent conductivity of copper
 - Q_{hot} a function of distance below meniscus
- Offset calculations with CON1D considering ANSYS cases 1 and 3

Case Studies: 3-D analysis of Nucor mold

Comparison between heat fluxes of 2.5 and 4 MW/m2
Case Studies: Nucor

Temperature profiles along different paths

\[Q = 2500 \text{ kW/m}^2 \]

\[Q = 4000 \text{ kW/m}^2 \]

Difference between constant and temperature dependent \(K_{\text{copper}} \)

\[
K_{\text{copper}} = 355 - \frac{1}{60} (T - 50)
\]

- Difference in thermocouple temperatures:

\[
\frac{123.81 - 124.37}{124.37} \times 100\% = 0.45\%
\]

Case 1 and 3 temperatures along path 1
Case Studies: Nucor

Q as a function of Z coordinate

- Using the same boundary conditions as in case 3
- The effect of changing K taken into account in ANSYS
- Thermocouple hole was not taken into account in ANSYS calculation

<table>
<thead>
<tr>
<th>Case (distance from hotface)</th>
<th>ANSYS (15mm)</th>
<th>CON1D (15mm)</th>
<th>CON1D (15.3mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>123.81</td>
<td>125.97</td>
<td>123.85</td>
</tr>
</tbody>
</table>

CON1D: offset is -0.3mm
Conclusions

• CON1D can be used to optimize and design a casting machine and to inspect possible problems in production.
• Calibration of CON1D needs 3D thermal analysis to define the offset, which was performed for 2 production casting molds.
• When defining the offsets:
 – It is reasonable to neglect temperature dependence of thermal conductivity of copper.
 – The thermocouple hole should be included in the 3D simulation model.
 – Copper near to the mold coldface far from the cooling channels has little effect on the temperature profile between the hotface and cooling channel, so may be neglected in 3-D calculations.
 – With offsets, the simple CON1D model predictions of mold and thermocouple temperatures are quite close to the 3-D model.