Device to Measure Surface Velocity in Flowing Molten Steel

ME470 Spring 05 Design Group 8
Marshal Dvorak, Ryan Higgins, Ken Kurko, Ed Schultz
& Brian G. Thomas, Faculty Advisor

Device to Measure Surface Velocity in Flowing Molten Steel

Acknowledgements

- University of Illinois Design Project (support)
- Continuous Casting Consortium
- Professor J. Bentsman
- Professor B. Dunn
- Bob Coverdil
- Bret Rietow
- Derek King
- Adrian Lee
- Kent Elam
- Dave Foley
- Clint Graham and others at Mittal Riverdale
Why Measure Surface Velocity?

- Validate fluid flow models
 - Water models
 - Computer simulations
- Monitor fluid motion
 - Defects in the final product
 - Surface velocity too fast: inclusions
 - Surface velocity too slow: surface defects, hooks
 - Breakouts
 - Quality monitoring: deviations in flow pattern should require extra inspection of associated steel product
- No reliable method to measure surface velocity exist
Mold Flow

Reasonably constant surface velocity to \(\sim 30 \text{mm} \) depth

Design Constraints

- Probe must withstand \(\sim 1550\degree \text{C} \)
- Must not dissolve or fracture (high thermal shock resistance)
- Account for EM noise and mold oscillations
- Must measure surface velocities between 0 and 0.5 m/s
Approach

- Literature review outlining viable methods
- Choice of methodology and design calculations
- Material selection and prototype construction
- Data acquisition
- Water model calibration, testing, & validation
- Correlate to the steel environment

Eliminated Methods

- Hot wire anemometry
 - Temperature too high
- Heat exchanger
 - Manufacturing complexity
 - Freezing problem
- Paddle wheel
 - Inclusions
 - Freezing problem
- Tracers
 - Inclusions
- Melting spheres
 - Too expensive
- Electromagnetic sensor
 - Tested in steel industry with little success
 - Expensive
 - Electromagnetic interference
- IR Doppler
 - Doesn’t penetrate slag layer
Melting Sphere Method

Abandoned

- Difficult to calibrate
- Requires rebuilding for each use
- Expensive

Images Source: A Novel Technique to Estimate Velocity in Liquid Steel and in Other High Temperature Liquid Metals Argyropoulos et al.

Karman Vortex Method

- Flow past a submerged cylinder in cross flow creates vortices which oscillate probe
- Oscillation frequency increases with velocity

Evaluation of Karman Vortex Method

- Relationship between velocity and frequency:
 \[V = \frac{f \cdot D}{St} \]

 \(f \) = shedding frequency
 \(D \) = diameter of cylinder
 \(St \) = Strouhal number

Poor correlation with water model measurements because:
Vortex shedding vibrations are smaller than natural frequency of current rod system

Comparison With Water Model Measurements

<table>
<thead>
<tr>
<th>Design Variables (Inputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillation time, (t_s) [s]</td>
</tr>
<tr>
<td>Strouhal Number, (St)</td>
</tr>
<tr>
<td>Diameter of probe, (D) [m]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pumping Velocity</th>
<th>Experimental Parameters</th>
<th>Theoretical Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Output</td>
<td>Input</td>
</tr>
<tr>
<td>(f_m) [Hz]</td>
<td>(V_m) [m/s]</td>
<td>oscillations</td>
</tr>
<tr>
<td>35</td>
<td>0.218</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>0.307</td>
<td>69</td>
</tr>
<tr>
<td>55</td>
<td>0.366</td>
<td>66</td>
</tr>
</tbody>
</table>

- Very poor correlation. Why?
- Vortex shedding vibrations are smaller than natural frequency of current rod system
Drag Force on a Sphere

• Porous, spherical probe is submerged in cross-flow
• Velocity dependant drag force causes sphere to displace
• Displacement measured by pressure sensors

Drag Force on a Sphere

• Advantages
 – Capable of measuring 2-D velocity
 – Has been tested in low temperature liquid metal environment with good results
 – Determines local velocity
 – Not a function of depth
 – Easily tested in water model
 – Tolerant to electromagnetic noise

• Disadvantages
 – Not tested in molten steel
 – Complex shape makes for difficulty in manufacturing
 – Drag coefficients not well known for porous sphere
Drag Force on a Cylinder in Cross Flow

- Design:
 - Thin beam: magnifies deflection
 - Thick cylinder: transmits drag force

Same probe could measure drag force and Karman vortex velocity simulataneously

Relationship Between Reynolds Number and Drag Coefficient

- Drag force on cylinder:
 \[F_D = \frac{C_D \cdot A \cdot \rho \cdot V^2}{2} \]

\[Re = \frac{V \cdot D_{rod}}{\nu} \]

\[C_D = 1 + 10 \cdot Re^{-2/3} \]
Drag Force Calculations

- Angular displacement of plate:
 \[\theta = \frac{1}{E \cdot I} \left[F_D \cdot x \cdot L + F \left(\frac{L^2}{2} \right) \right] \]

- Deflection of plate:
 \[d_{\text{plate}} = \frac{1}{E \cdot I} \left[F_D \cdot x \cdot \left(\frac{L^2}{2} \right) + F_D \cdot \left(\frac{L^3}{3} \right) \right] \]

- Deflection at end of probe:
 \[d_{\text{probe}} = d_{\text{plate}} + L_{\text{rod}} \cdot \tan \theta \]

Effects of Submersion Depth on Drag Force Displacement

- The maximum deflection occurs at approximately 4 inches for all velocities
- Probe displacement can be considered independent of submersion depth
Initial Design

- Decoupled motion of Karman vortex and drag force
- Two different surface velocity measurements from same device
- Allowed for various thicknesses for bending beams
- Set aside Karman vortex component due to time constraints

Probe and Testing Stand

- Strain Beam
- Probe
- Water Testing Stand
Data Acquisition Setup

- ±15V power supply
- Strain Bridge
- Data Acquisition Hardware

Strain Bridge Schematic

- The gain resistor can be chosen to give the optimal output voltage for data acquisition
Strain Gauges Mounted on Beam

Strain vs. Voltage

- Voltages were measured for known displacements
- Displacements were correlated to strain
- Strain was correlated to voltage

\[y = 0.0002x \]
\[R^2 = 0.9993 \]
Surface Velocity increases with Output Voltage

\[\text{Velocity} = 0.5741 \cdot \text{Voltage}^{0.5101} \]

Water Tunnel
Water Tunnel Calibration

- Water Tunnel has no way of displaying velocity
- A tracer study was conducted to determine the velocity in the water Tunnel

![Graph showing Velocity vs. Motor Frequency]

\[y = 0.0067x - 0.055 \]

\[R^2 = 0.9797 \]
Validation of Probe in Water

- Comparison of measured & expected velocity:

<table>
<thead>
<tr>
<th>Voltage [V]</th>
<th>Displacement [m]</th>
<th>Velocity [m/s]</th>
<th>Motor Frequency [Hz]</th>
<th>Velocity [m/s]</th>
<th>Error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0549</td>
<td>0.00082</td>
<td>0.121</td>
<td>25</td>
<td>0.113</td>
<td>-7.50</td>
</tr>
<tr>
<td>0.0790</td>
<td>0.00125</td>
<td>0.147</td>
<td>30</td>
<td>0.145</td>
<td>-5.22</td>
</tr>
<tr>
<td>0.105</td>
<td>0.00166</td>
<td>0.173</td>
<td>35</td>
<td>0.180</td>
<td>3.97</td>
</tr>
<tr>
<td>0.142</td>
<td>0.00244</td>
<td>0.199</td>
<td>40</td>
<td>0.213</td>
<td>8.72</td>
</tr>
<tr>
<td>0.188</td>
<td>0.00320</td>
<td>0.228</td>
<td>45</td>
<td>0.247</td>
<td>7.62</td>
</tr>
<tr>
<td>0.238</td>
<td>0.00405</td>
<td>0.267</td>
<td>50</td>
<td>0.280</td>
<td>8.17</td>
</tr>
<tr>
<td>0.293</td>
<td>0.00503</td>
<td>0.285</td>
<td>55</td>
<td>0.314</td>
<td>8.74</td>
</tr>
<tr>
<td>0.350</td>
<td>0.00596</td>
<td>0.313</td>
<td>60</td>
<td>0.347</td>
<td>9.81</td>
</tr>
</tbody>
</table>

\[
y = 0.0067x - 0.055 \\
R^2 = 1
\]

\[
y = 0.0058x - 0.0196 \\
R^2 = 0.9994
\]
Probe Material Selection

Refractory Materials
- Boron Nitride
 - Possible contamination
- Beta Sialon
 - Very expensive
- Tantalum
 - Limited sources
 - Expensive
- Alumina Graphite
 - Ideal (SEN Material)
 - Expensive, difficult to acquire
- Alumina
 - Less expensive than alumina graphite
 - Readily available

Future Steel Testing

- Larger drag force in steel requires thicker strain beam:
 - Large deflections due to increased forces surpass the limits of the beam theory applied
 - Steel testing strain beam should be 1.2 mm thick
- Alumina probe must be preheated to withstand thermal shock
Conclusions

- A device to measure surface velocity of molten steel in the CC mold has been designed
- The device has been validated in a water model and measures surface velocity to within 10% from 0.1-0.4m/sec
- Design features
 - Simple, robust, mechanical mechanism
 - Capable of operating in molten steel
 - Resistant to fluctuations in a range of submersion depths
 - Tolerant to electromagnetic noise
 - Inexpensive

Future Work

- Construct mounting apparatus to suspend device over continuous casting mold
- Test in molten steel environment (quantification of molten steel velocity)
- Validation / comparison with nail-board measurements and modeling predictions
- Further study of Karman vortex method