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Model of Flow In 3-port SEN:
Vem=,  water model and steel caster
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Q Casting Conditions Simulated
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Mold Length (mm) 1200

Domain Width (mm) top (mold width) 984
bottom 934.04

Domain Thickness (mm) top (mold thickness) 132
bottom 79.48

Domain Length (mm) 2400

Nozzle Port Height x Thickness (mm x mm)

75 x 32 (inner bore)

Bottom Nozzle Port Diameter (mm) 32
SEN Submergence Depth (mm) 127
Casting Speed (m/min) 1.524
Superheat (° C) 57.
Fluid Dynamic Viscosity (m%/s) 7.98 x 107
Fluid Density (kg/m?) 7020
Particle Density (kg/m?) 2700

Particle Diameter (um)

100, 250 and 400
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i Transient Flow near Stopper Rod
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Clogging:
Asymmetric flow due to turbulence °99ing

~8% of particles touch walls
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K Transient Flow near Nozzle Port
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LES in water model

LES in steel caster

Measured dye injection
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Numerical Validation: Time-averaged
s Velocities from Different Grid Resolutions
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- Effect of Grid Resolution
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Top Surface Level Profiles
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= Water model

Liquid level is calculated
from predicted pressure:
(P~ Puan)

h=
(psle@l P e ) g

{= Steel Caster

BG Thomas 11

el
w
2
E
P4
w
%]
)
<
=
12}
°
o
@
2
S
2
>
=
9]
o
[]]
>
x

o
w

(PIV data from S. Sivaramakrishnan, 2000.)

~ PIV

LES, left point
LES, right point

o

1

M il
ull \‘ ! “ \
YW1

.‘U‘”‘

\\\

Velocity Fluctuations on Top Surface

Horizontal (x) velocity

«— towards SEN at a

point 20mm below
top surface, mid-way
between SEN and
narrow face.

1074}

S,
L

A spectral analysis of
the above signals.

FouriEr coefficierlt amplitude (m/s)
3
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Yuan et al, Met Trans B, 2004
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Temperature field

TK)

Unsteady Heat Transfer in

Thin Slab Caster
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Instantaneous temperature field
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Mean temperature profile - validation

Thomas, B.G., B. Zhao, et al; 2004 NSF Design, Service, and M
Grantees and Research Conf. Proceedings, (Dallas, TX, Jan. 5-8, 2004), pp. T/BGT/1-41.
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Temperature field
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Thomas, B.G., B. Zhao, et al; 2004 NSF Design, Service, and Mc
Grantees and Research Conf. Proceedings, (Dallas, TX, Jan. 5-8,2004), pp. T/BGT/1-41.
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Inclusions: Types and Sources

Dendritic alumina

University of Illinois at Urbana-Champaign

Alumina cluster

Inclusion Sources

5)

Refs:

oy ‘ e

1) Deoxidation products;

2) Reoxidation products (oxidized
by slag or by air);

3) Slag entrapment;

4) Exogenous inclusions from

other sources, such as, broken
refractory brickwork & ceramic
lining particles;

Chemical reactions, such as
dissolution of refractory walls

' nie'
d W 4

-
¢ TN e

1). Cramb et al, 2001

ing C

2). Flemings, Metall. Trans., 1972.

Iss

3). L. Zhang & BG Thomas, unpublished report to IMF
4). L. Zhang & BG Thomas. 2002 Steelmaking Conference, ISS.
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Particle Transport Model:
validation with water model data

Measure particles
trapped by screen
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. Lagrangian trajectories of
15000 particles

(plastic beads in water
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o Particle Capture by Dendritic Interface

WG
-\ "‘;:uouu pushing entrapment engulfment
g, ., } |
-/
particle pushing and capture by \ A
— °

engulfment and entrapment. °

Solidification direction
E fi herical y  Cross flow velocity (estimated from LES results)
orces acting on a spherica —

. " B, x
particle close to dendritic niI oS +FL.£ 11 I l
front of mushy-zone: ¢ —~ o
Buoyancy: Fy ) _ ’
Drag force: Fj,, and Fp,, Primary Dendrite Arm
Lift force: F,. Spacing (PDAS)
Lubrication force: F ;,
Van der Waals force: F,
Concentration Gradient force: F,4
Reaction force: Fy
(Press gradient, stress gradient

added mass and Basset forces
neglected.)

; — Primary dendrite arm
Dendrite growth speed =V,

Dendrite shape computed by N. Provatas, N. Goldenfeld, and J. A. Dantzig, 1998.
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Particle Capture Criterion
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v
no
Continue 4—‘ Particle contacts a boundary representing mushy-zone front? ‘
l yes
no
’ Particle size larger than PDAS (d,>PDAS)? }—’m
l yes

Drift back

to flow il In solidification direction, repulsive force smaller than attractive force?

FL_FD,,{_Z(FLuIJ_FGru(I_F})COSH<O

l yes
Can cross-flow and buoyancy drive particle into motion though rotation?

(F,, +F;,)cos0+(F,~F, )sin0>(F,, - F,, —F,)sin20 ,if F,,and Fy, in same direction

Dy

or
(Fo,q - FBv”)cosH-f— (FL -F,, )sm 0> (F,, = Fpq — F,)sin 20, if Fp,, and Fy, in opposite direction [~
yes and Fp,, >Fp, no
or

(FB,q _Fo.q)cose*'(FL -, )sm 0> (F,—Fgoy —F,)sin20 | if Fpp, and F,, in opposite direction
and Fp, <Fp,
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Cross-Flow Velocity Effect on
Capture of Slag Droplets
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Particle diameter, d, (um)

Critical downward cross-flow velocity (relative to shell) to capture slag
droplets in solidifying steel dendritic interface
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. Validation of Particle Capture Criterion —
\"":r::::..mSIaq Droplets in Quiescent Steel

Particle radius (m)

L] Engulfed (Experiment, H. Shibata et al., 1998) -
a Pushed (Experiment, H. Shibata et al., 1998) . g
Predicted critical velocity, hY, from Kaptay, 2001 107 — -7 r
7777777 Predicted critical velocity (no interfacial gradient force) -7
25 L L I ’Z'\ —~ - -
- i = -7
€L 5o -
E B Phe
= 73 P
3 - e
> 2 r
o 510" F
g .-
g R
2 2
g i
IS F,
3 — = F
® o i
© o | h¢ calculated based on Kaptay 2001
2 r 10 ° 10°
b=
L
£

Comparison of the Van der Waals, lubrication
and concentration gradient force.

20
Radius of Particle (um)

Comparison of predicted and measured critical
solidification speeds for pushing of slag particles
in quiescent steel.
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CrossFlow

PMMA particles settled on ice-water

interface before introducing flow
Sectionon A - A

0.015
PMMA, R=4.2um/s
I PMMA, R=4.2um/s, experiment
00125 | _ . _._ PMMA, R=68.8um/s [
[ PMMA, R=68.8um/s, experiment

0.011 Experimental data from Q. Han, 1994. F

0.0075+

0.005

0.0025-{

Flow speed needed to push particle into motion (m/s)

0 0.0601 0.0602 0.0bOS 0.0b04 0:0‘005 0.0b06 0.0007

Radius of spherical PMMA particle (m)

Comparison between predicted and measured critical
flow speeds to push PMMA particle into motion. _ 3
& 3 a ]

100pm PMMA (Q. Han, 1994)
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Q_ Particle Motion in Steel Caster
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| Animation-mold slag particle entrainment

Metals Processing Simulation Lab . BG Thomas 22




What Causes Asymmetry?
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Inclusion Removal to top surface
(originally entered from nozzle ports)
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00
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704
60
507
407

304

Fraction of particles removed by the top surface (%)

9s duration of particle injection 100um :
S R it 250um | [
—-—-— 400pm | |
T 70% -
E _/ E
./ £
3 ] 3
E R e 42% ¢
|/ ."-— 3
R 3
107 - Particle density (silica):
/! o/
1 12% ¢ 2700 kg/m3
0 20 40 60 80 100 120 1)10

Time after first particle entered mold (s)

Very large particles can be removed with a straight-walled mold

University of Illinois at Urbana-Champaign

(owing to better buoyancy and more difficult to entrap)
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Y Removal and Entrapment History for

i
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<, Large Particles from Nozzle Ports
gwo \100 —
@ _ 3 9s duration of particle injection 100um | £ E 3 9s duration of particle injection 3
£% | S R P zsom |
@ go] nm e 3 80] —-—-= 400um | £
§ 1 - 3
E £ PR £ 2 703 E
2 60] > -7 L < o] E
E e '/ E g 4 E
3 504 7 £ ‘é 504 E
£ 27 3
E 40 I L 8 a0 3
7 /e E 7 E
9 ‘ - 2
e B i 3
f_i 204 / E g 207 eI 3
S 3 /s B o 3 et
S 10] /',:" E é 0 S T T
w 00 20 40 60 80 100 120 140 v 0 20 40 60 80 100 120 140
Time after first particle entered mold (s) Time after first particle entered mold (s)
Fractions of particles removed to top surface and captured by upper 2.4m shell.
Particle Size 100pum 250pm 400pm
Removal Fraction 12.58% 42.50% 69.89%
Capture Fraction 39.01% 24.30% 11.29%
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Inclusion Removal in the Mold:
DN

“mm,  Simulation and Measurements

SEN clogging accounts for
some inclusion removal

Inclusion| SEN Mold slag
Simulation Size walls | (top surface)
40um 7% 8%
200um 7% 42%
Measurement All 22%
(tundish to slab)

Measurements: Zhang et al, AISTech 2004, Nashville, TN
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%, Inclusion Distribution in Solid Slab

i
Ay Uous . .
Seztha,  Wideface view Narrowface view
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41 ‘ in Solid Steel Strand 4] ‘ Zoom in
| | 0
-34 : -39 g
! | 1
g \ Casting Speed: 25.4mm/s ‘ E
24 o : ¢ 24 | .
| i
14 9s sudden burst of small -1 1 —
inclusions into mold region ]
04 / 0 4
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Meniscus Location when 7
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14 Liquid-Pool 18 ] . .
i 2 E Inclusion density:
, 41"| 2700 and 5000 Kg/m3
2- 2. (m) 1
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Predicted Total Oxygen
\ e

DNuou;

s (Continuous Injection of Small Particles)

““‘Q.‘?ps ortium

ppm

(m) 04 0.3 0.2 -0.1 0 0.1 0.2 0.3 0.4 (m) 0
Predicted oxygen concentration in final steel slab

(10ppm oxygen from continuous injection of particles from nozzle ports).

Oxygen concentration is computed from computed positions of entrapped
small particles (<40um) by:
B (48/102) M,
° p(AxAyAz)+(1—p/pP)Mp

N,
. — pp
where: M= Z
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Mold Slag Entrainment
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2=0.59849 m

Instantaneous
Velocity vectors

(transient)

01

Stream lines in the plane

=0 sen (U——/d Time average
H streamlines
V05—

Horizontal sections 38mm below top surface

Vortexing around nozzle - erodes nozzle walls and entrains mold slag
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¢ Transport of Large Particles Entrained

= = t 8s
d,=100um _ d,=100um _ d,=100um _ d,=100um _
- — — —
- = - - - =
_ - — — —

4000 particles (100um) introduced from volumes near top surface.
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Removal of Large Particles

from Top Surface

o

. .. .

S, (originally entrained from top surface)

=Onsortiunm
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g f
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Removal of Large Particles Entrained
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§ 9(;| ’ 3 <Er_ g(; 1.85 of particle injection 100um 3

3 w0l I 1 250um | b

a goil: E 5 g0l il 1

a 3 P2 7

% 7&E/1.Bsﬂmﬂicle injection 3 g 70] i

£ ] P2 7

2 603 E < 60 b
B E| E

? o F B

g % E 550 b

IS 8 4 1
Y]

2 0] E 8 40 3

g -3 3

2 304 E 530 3

= 3 3 % ] i

g 204 E 2 0] 3

‘S N

s} E E 5 £ 3
c

S 104 . S0 ]

g = 1 O 3

S 4 g i/

S 20 40 60 80 100 120 = 140 0 20 40 60 80 100 120 140

Time after first particle entered mold (s)

Time after first particle entered mold (s)

Fractions of particles removed to top surface and captured by upper 2.4m shell.

Particle Size 100pum 250pm 400pm
Removal Fraction 44.60% 92.58% 99.05%
Capture Fraction 24.93% 4.03% 0.40%
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Conclusions

+ LES and Lagrangian particle transport can predict turbulent
liquid-particle flow in continuous steel casting molds with
reasonable accuracy.

v A simple particle capture criterion based on force balance
appears to agree with prior experimental results.

» Particle entrapment into a solidifying dendritic interface
depends on whether many forces can balance including: drag
from transverse flow and surface energy gradient forces from
sulfur concentration gradients

+ Removal fraction to top surface slag layer of slag droplets
from nozzle ports is 70% of 400um but < 12% for <100um;

v Re-entrainment of slag particles at the top surface depends
on particle size. >92% of 250um particles return to the slag
but >50% of 100um incs are eventually entrapped in the steel
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Implications

e Difficult to remove inclusions in the mold

e Optimize upstream processes to remove
inclusions before they get to the mold

e Optimize flow in the mold:

— Avoid skewed surface profile, level fluctuations,
slag entrainment, and other problems

— Avoid meniscus freezing and hooks

e Computational modeling is a powerful tool to
predict transient flow, level fluctuations,
surface defects, and inclusion behavior
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