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Defects related to Mold Flow 

Inclusion defects from:
- nozzle clogging
- air entrainment
- entering nozzle from upstream
- mold slag entrainment

Surface defects from:
- Top surface level profile
(Poor flux infiltration) 

- Level fluctuations
- Surface hook formation 
(meniscus freezing)

Shell thinning & breakouts
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Model of Flow in 3-port SEN:
water model and steel caster
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Casting Conditions Simulated

57.Superheat (°C)

100, 250 and 400Particle Diameter (µm)

2700Particle Density (kg/m3)
7020Fluid Density (kg/m3)

7.98 × 10-7Fluid Dynamic Viscosity (m2/s)

1.524Casting Speed (m/min)
127SEN Submergence Depth (mm)

32Bottom Nozzle Port Diameter (mm)

75 × 32 (inner bore)Nozzle Port Height × Thickness (mm × mm)

2400Domain Length (mm)

132
79.48

Domain Thickness (mm)   top (mold thickness)
bottom

984
934.04

Domain Width (mm)     top (mold width)
bottom

1200Mold Length (mm)
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Transient Flow near Stopper Rod
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Transient Flow near Nozzle Port
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Transient Flow Pattern

LES in water model

Measured dye injection

LES in steel caster
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Numerical Validation: Time-averaged 
Velocities from Different Grid Resolutions
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Effect of Grid Resolution

Number of computational cells (× 106)
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Top Surface Level Profiles
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Velocity Fluctuations on Top Surface

Horizontal (x) velocity 
towards SEN at a 
point 20mm below 
top surface, mid-way 
between SEN and 
narrow face.
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Instantaneous temperature field

Mean temperature profile - validation
Distance below meniscus (mm)
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Inclusions: Types and Sources

10µm

Dendritic alumina Alumina cluster

Refs:
1). Cramb et al, 2001 Steelmaking Conference Proceedings, ISS
2). Flemings, Metall. Trans., 1972.  
3). L. Zhang & BG Thomas, unpublished report to IMF
4).  L. Zhang & BG Thomas. 2002 Steelmaking Conference, ISS.

400µm

Inclusion Sources

1) Deoxidation products;
2) Reoxidation products (oxidized 

by slag or by air); 
3) Slag entrapment; 
4) Exogenous inclusions from 

other sources, such as, broken 
refractory brickwork & ceramic 
lining particles;

5) Chemical reactions, such as 
dissolution of refractory walls

Slag inclusions (globules)

10µm

Bubble with inclusions 
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Lagrangian trajectories of 
15000 particles
(plastic beads in water 
chosen to match 300 micron 
alumina inclusions in steel)
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pushing entrapment engulfment

Particle Capture by Dendritic Interface

particle pushing and capture by 
engulfment and entrapment.

χ

η

Forces acting on a spherical 
particle close to dendritic
front of mushy-zone:

Dendrite shape computed by N. Provatas, N. Goldenfeld, and J. A. Dantzig, 1998. 

Buoyancy: FB
Drag force: FDχ and FDη
Lift force: FL
Lubrication force: FLub
Van der Waals force: FI
Concentration Gradient force: FGrad
Reaction force: FN
(Press gradient, stress gradient
added mass and Basset forces
neglected.)

Solidification direction
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Particle Capture Criterion

( ), 2 cos 0L D Lub Grad IF F F F Fχ θ− − − − <

( ) ( ) ( ), , ,cos sin sin 2D B L D Lub Grad IF F F F F F Fη η χθ θ θ+ + − > − −

( ) ( ) ( ), , ,cos sin sin 2D B L D Lub Grad IF F F F F F Fη η χθ θ θ− + − > − −

Particle size larger than PDAS (dp≥PDAS)?
no Capture

yes

In solidification direction, repulsive force smaller than attractive force?noDrift back 
to flow

Particle contacts a boundary representing mushy-zone front?
yes

no
Continue

yes

Can cross-flow and buoyancy drive particle into motion though rotation?

, if FDη and FBη in same direction

, if FDη and FBη in opposite direction
and FDη≥FBη

or

or
, if FDη and FBη in opposite direction

and FDη<FBη

yes no

( ) ( ) ( ), , ,cos sin sin 2B D L D Lub Grad IF F F F F F Fη η χθ θ θ− + − > − −
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Cross-Flow Velocity Effect on 
Capture of Slag Droplets

Critical downward cross-flow velocity (relative to shell) to capture slag 
droplets in solidifying steel dendritic interface
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Validation of Particle Capture Criterion –
Slag Droplets in Quiescent Steel
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Comparison of predicted and measured critical 
solidification speeds for pushing of slag particles 
in quiescent steel.
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Validation of Particle Capture Criterion -
CrossFlow

Radius of spherical PMMA particle (m)
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Experimental data from Q. Han, 1994.

experimental setup (Q. Han 1994).

Comparison between predicted and measured critical 
flow speeds to push PMMA particle into motion.

water

PMMA particles settled on ice-water 
interface before introducing flow

100µm PMMA (Q. Han, 1994)
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Particle Motion in Steel Caster

Animation-
small 

particles

Animation-
small 

particles

Animation-100 µmAnimation-100 µm Animation-mold slag particle entrainmentAnimation-mold slag particle entrainment
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What Causes Asymmetry?
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Inclusion Removal to top surface
(originally entered from nozzle ports)
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Very large particles can be removed with a straight-walled mold
(owing to better buoyancy and more difficult to entrap)

Very large particles can be removed with a straight-walled mold
(owing to better buoyancy and more difficult to entrap)
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Removal and Entrapment History for 
Large Particles from Nozzle Ports
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Inclusion
Size 

SEN 
walls 

Mold slag 
(top surface)

40µm 7% 8% 
Simulation 

200µm 7% 42% 
Measurement 

(tundish to slab) 
All            22%                 

 
 

Inclusion Removal in the Mold: 
Simulation and Measurements

Measurements: Zhang et al, AISTech 2004, Nashville, TN

SEN clogging accounts for 
some inclusion removal

SEN clogging accounts for 
some inclusion removal
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Narrowface viewNarrowface view

Zoom inZoom in

Wideface viewWideface view

9s sudden burst of small
inclusions into mold region
9s sudden burst of small
inclusions into mold region

Inclusion size:

10 and 40 µm

Inclusion density:

2700 and 5000 Kg/m3

Inclusion size:

10 and 40 µm

Inclusion density:

2700 and 5000 Kg/m3
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Predicted Total Oxygen 
( Continuous Injection of Small Particles)

Predicted oxygen concentration in final steel slab

(10ppm oxygen from continuous injection of particles from nozzle ports).

( )o
p

p

(48/102) M
C

x∆y∆z (1 / )Mpρ ρ ρ
=

∆ + −

Oxygen concentration is computed from computed positions of entrapped 
small particles (≤40µm) by:

where:
CN

i=1

3d

6
p pπ ρ

∑Mp=
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Mold Slag Entrainment
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Transport of Large Particles Entrained 
from Top Surface

t = 1.80s
dp = 100µm

t = 2.88s
dp = 100µm

t = 5.58s
dp = 100µm

t =7.38s
dp = 100µm

4000 particles (100µm) introduced from volumes near top surface.
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Removal of Large Particles 
(originally entrained from top surface)

1.8s of particle injection
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Removal of Large Particles Entrained 
from Top Surface

1.8s of particle injection

Time after first particle entered mold (s)
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1.8s of particle injection

Time after first particle entered mold (s)
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Conclusions
LES and Lagrangian particle transport can predict turbulent 
liquid-particle flow in continuous steel casting molds with 
reasonable accuracy.
A simple particle capture criterion based on force balance 
appears to agree with prior experimental results.
Particle entrapment into a solidifying dendritic interface 
depends on whether many forces can balance including: drag 
from transverse flow and surface energy gradient forces from 
sulfur concentration gradients 
Removal fraction to top surface slag layer of slag droplets 
from nozzle ports is 70% of 400µm but < 12% for ≤100µm; 
Re-entrainment of slag particles at the top surface depends 
on particle size.  >92% of 250µm particles return to the slag 
but >50% of 100µm incs are eventually entrapped in the steel
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Implications

Difficult to remove inclusions in the mold
Optimize upstream processes to remove 
inclusions before they get to the mold
Optimize flow in the mold:
– Avoid skewed surface profile, level fluctuations, 

slag entrainment, and other problems
– Avoid meniscus freezing and hooks

Computational modeling is a powerful tool to 
predict transient flow, level fluctuations, 
surface defects, and inclusion behavior


