

Inclusion Removal Estimated from Slag Analysis (Alumina Pickup)

	Liquid slag on the top	Al ₂ O ₃ in final liquid slag	Al ₂ O ₃ in original slag	T.O. removal to mold slag	T.O. at the SEN outlet	T.O. removal at the mold
Strand 1	10.59kg	7.23%	2.84%	12.2ppm	59±35 ppm	21%
Strand 2	8.46kg	8.09%	2.84%	14.7ppm		24%

Validation:

Estimated T.O. in the slab of strand 1:
 $59 \times (100\% - 20.7\%) =$ 47 ± 28 ppmMeasured T.O. in the slab:47 ± 20 ppm

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lifeng Zhang 18

Thin Slab with EMBr Has Similar Cleanliness as Conventional CC Slab

	T.O. (ppm)	<50µm inclusions (#/mm²)	>50µm inclusions (mg/10kg steel)				
Thin slab (no EMBr)	31.9	8.36	4.53				
Thin slab (with EMBr)	19.2	7.16	1.75				
Conventional slab	18.5	6.55	1.99				
Conventional CC process: BOF (250t) \rightarrow LF refining \rightarrow Vertical bending conventional slab casting (210mm \times 1350mm) (no EMBr)							
Thin slab CC process: BOF(110 tonne)→LF→CSP (70mm ×1100~1680mm)							
University of Illinois at Urbana-Champa	ign • Me	tals Processing Simulation Lab	Lifeng Zhang 38				

Parameters in the Current Study

