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Objectives
Develop and validate efficient computational 
models for computing time-dependent flow and 
particle transport / entrapment during continuous 
casting
Simulate time-dependent turbulent flow in nozzle 
and mold regions of water models and actual 
continuous steel casters
Simulate transport and entrapment of impurity 
particles during continuous steel casting
Investigate particle distribution in steel slabs
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Outline

Description of Computational Model
Results:
(i) Validation of flow velocity simulation in a 0.4-scale 

water model
(ii) Validation of Lagarangian particle transport simulation 

in a full-scale water model
(iii) Simulation of liquid-phase velocities in an actual thin-

slab steel caster and its corresponding water model
(iv) Simulation of particle transport and capture in an 

actual thin-slab steel caster
• Conclusions
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Governing Equations for Turbulent Flow

Liquid phase (3D time-dependent Navier-Stokes Equations):Liquid phase (3D time-dependent Navier-Stokes Equations):
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this work
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Governing Equations for Particle Transport

Discrete Phase - Particles (Lagrangian Approach):Discrete Phase - Particles (Lagrangian Approach):
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Details of Numerical Method
• 2nd – Order accuracy in space and time for flow simulations

• Unstructured Cartesian grid and realistic computational 
domain geometry

• FFT or AMG (Algebraic Multi-Grid) fast solver for pressure 
Poisson equation

• 4th – Order Runge-Kutta method for particle transport

• One-way coupling and no particle interaction due to low 
volume fraction of particle phase
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Validation of Flow Velocity Computation 
in a 0.4-Scale Water Model

Validation of Flow Velocity Computation 
in a 0.4-Scale Water Model
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The 0.4-Scale Water Model

0.4-scale water model at former LTV Steel0.4-scale water model at former LTV Steel

0 50 100
0

100

200

300

400

500

600

700

800

900

65 mm

Tundish

Upper Tundish Nozzle

40o

15o

Bore Dia 32mm

132mm

227mm

18 mm

77 mm

SEN

Mold

Slide gate opening

726 mm

3x35 mm dia exit holes
Spaced uniformly on bottom

Meniscus
X

Z

95 mm

31x31
mm

39%
area
open

Y

Z

Y

X

Z

Computational domain
(1.6M Cells)

Computational domain
(1.6M Cells)



University of Illinois at Urbana-Champaign  • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab  • Quan Yuan

Instantaneous Velocities in Nozzle Region
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Instantaneous Velocities in Mold Region
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Top Surface Velocity Fluctuation
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Instantaneous Flow in Upper Roll Zone
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Time-Dependent Flow Structures in 
Lower Roll Region
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Simplified Simulations 1&2 (Half-Mold)

Schematics of simulation domainSchematics of simulation domain (a)
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Comparison of Time-Averaged Flow Fields 
in Mold Region
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Asymmetry in Lower Roll Region
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Half-Mold vs. Full-Mold Simlations

Time (s)

H
or

iz
on

ta
lv

el
oc

ity
to

w
ar

ds
SE

N
,-

u
(m

/s
)

0 10 20 30 40 50 60

0

0.05

0.1

0.15

0.2

0.25

0.3
LES1
LES2
PIV

Two sides interaction is the main reason causing large fluctuation 
of top surface velocities.

Two sides interaction is the main reason causing large fluctuation 
of top surface velocities.



University of Illinois at Urbana-Champaign  • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab  • Quan Yuan

Time-Averaged Velocities along Top 
Surface Centerline

Time-averaged (left) and rms (right) velocities 
along centerline 3mm below top surface

Time-averaged (left) and rms (right) velocities 
along centerline 3mm below top surface

PIV : S. Sivaramakrishnan, M.S. Thesis, 2000.PIV : S. Sivaramakrishnan, M.S. Thesis, 2000.
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Velocity in Lower Roll Region
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Observations
LES predicted velocities agree well with PIV measurements
The partial opening of the slide-gate induces a long, complex recirculation one in 
the SEN. Complex flow structures consisting of single and multiple vortices are 
seen to evolve in time at the outlet plane of the nozzle port.
“Stair-step” and upward-bending flow patterns were observed in instantaneous 
jets.
Significant asymmetry is seen in the instantaneous flow in the two halves of the 
mold cavity.  Asymmetric flow structures are seen to persist longer than 200 
seconds in the lower rolls in PIV.
Level fluctuations near the narrow face occur over a wide range of frequencies, 
with the strongest having periods of ~7 and 11-25s. The instantaneous top 
surface velocity is found to fluctuate with sudden jumps from -0.01m/s to 0.24m/s 
occurring in as little as ~0.7s.  These velocity jumps are seen in both the full 
nozzle-mold simulations and the PIV measurements.
The velocity fields obtained from half-mold simulations with approximate inlet 
velocities generally agree with the results of the full domain simulations and PIV 
measurements.  However, they do not capture the interaction between flows in 
the two halves, such as the instantaneous sudden jumps of top surface velocity.

LES predicted velocities agree well with PIV measurements
The partial opening of the slide-gate induces a long, complex recirculation one in 
the SEN. Complex flow structures consisting of single and multiple vortices are 
seen to evolve in time at the outlet plane of the nozzle port.
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Validation of Particle Transport Computation 
in a Full-Scale Water Model

Validation of Particle Transport Computation 
in a Full-Scale Water Model
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Schematics of a Full-scale Water Model 
with Particle Removal Measurements
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Inlet Velocities and 
Particle Initial Positions

Inlet port

casting direction

Distance from bottom along port centerline (m)

Ti
m

e-
av

er
ag

ed
in

le
tv

el
oc

ity
co

m
po

ne
nt

s
(m

/s
)

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

vx
vz

Time-averaged inlet velocities and initial distribution 
of particles at nozzle port in simulation.

Time-averaged inlet velocities and initial distribution 
of particles at nozzle port in simulation.



University of Illinois at Urbana-Champaign  • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab  • Quan Yuan

Simulated Flow in Mold Region
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Motion of All 15,000 ParticlesMotion of All 15,000 Particles

Typical particle 
trajectories in 
simulation
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Particle Removal History
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Particle Removal Results (by Screen)Particle Removal Results (by Screen)
 0-10 seconds 10-100 seconds 

500 particle groups   
1 27.2% 23.4% 
2 17.8% 27.2% 
3 26.2% 23.0% 
4 23.8% 23.2% 
5 33.0% 18.2% 

Average 25.6% 23.0% 
Standard Deviation 5.5% 2.9% 

2500 particle groups   
1 27.2% 25.9% 
2 26.8% 27.1% 
3 20.0% 26.5% 
4 23.3% 27.8% 
5 31.8% 24.1% 
6 32.6% 24.9% 

Average 27.0% 26.1% 

LES 

Standard Deviation 4.8% 1.4% 

Experiment 22.3% 27.6% 
 

Observations:
A comparison of particle 
removal fractions obtained 
from 2,500 and 500 particle 
groups suggests that 
increasing the number of 
particles improves the 
accuracy of removal 
predictions for later times 
(e.g. 10-100s).  At least 
2500 particles are required 
to obtain accuracy within 
±3%.  Particle removal at 
early times (e.g. ≤10s) is 
governed by chaotic 
fluctuations of the flow, 
which generate variations 
of ±5%. 

Observations:
A comparison of particle 
removal fractions obtained 
from 2,500 and 500 particle 
groups suggests that 
increasing the number of 
particles improves the 
accuracy of removal 
predictions for later times 
(e.g. 10-100s).  At least 
2500 particles are required 
to obtain accuracy within 
±3%.  Particle removal at 
early times (e.g. ≤10s) is 
governed by chaotic 
fluctuations of the flow, 
which generate variations 
of ±5%. 
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Simulation of Time-Dependent Flow in 
an Actual Thin-Slab Steel Caster and 

Its Corresponding Water Model

Simulation of Time-Dependent Flow in 
an Actual Thin-Slab Steel Caster and 

Its Corresponding Water Model
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Schematics of Computational Domains
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Modeling Solidification Effects on Flow
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Transient Velocities near Stopper Rod
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Observation:

Significant asymmetry observed 
between the flow on the two sides  at
shown slice, likely due to non-ergodic  
turbulence.

Observation:

Significant asymmetry observed 
between the flow on the two sides  at
shown slice, likely due to non-ergodic  
turbulence.
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Instantaneous Flow near Nozzle Port
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Time-Averaged Velocities Along 
Port Centerlines

Velocity along the center line of side ports (m/s)
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Transient Flow in Water Model

Dye injection (Dr. R. O’Malley)Dye injection (Dr. R. O’Malley)

LESLES
Video Clip
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Time Averaged Fluid Velocity Field (~50s)
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Center Nozzle Port Effects on 
Flow in Mold Region
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Center Nozzle Port Effects on 
Flow in Mold Region (ctd.)
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Steel Caster vs. Water Model
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Top Surface Level Profiles

Distance from center, x (mm)W
at

er
su

rfa
ce

:l
iq

ui
d

le
ve

lp
ro

fil
e

(m

0 0.1 0.2 0.3 0.4
-4

-2

0

2

4

Measured Level (Instant 1)
Measured Level (Instant 2)
Measured Level (Instant 3)
Predicted Instantaneous Level

SEN

Water modelWater model

Liquid level is calculated 
from predicted pressure:
Liquid level is calculated 
from predicted pressure:

( )
( )

mean

steel flux

p p
h

gρ ρ
−

=
−

Distance from center, x (m)S
te

el
su

rfa
ce

:l
iq

ui
d

le
ve

lp
ro

fil
e

(m

0 0.1 0.2 0.3 0.4

-12
-10

-8
-6
-4
-2
0
2
4
6
8

10

Predicted Level, Right
Predicted Level, Left
Measurement

SEN

Instant t = 20.3 in simulation

Steel CasterSteel Caster



University of Illinois at Urbana-Champaign  • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab  • Quan Yuan

Top Surface Velocity Fluctuations
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Similar high frequency, large fluctuation components are also 
observed in thin-slab caster

Similar high frequency, large fluctuation components are also 
observed in thin-slab caster
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Frequency distribution of u-velocity fluctuations 
(from Fourier analysis of LES signals)
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A similar behavior of the power spectrum is observed in measurements 
on a scaled water model Lawson and Davidson (2002).

A similar behavior of the power spectrum is observed in measurements 
on a scaled water model Lawson and Davidson (2002).
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Transport and Entrapment of Particles in 
Thin-Slab Steel Caster
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Inclusion Pushing/Capture Mechanisms 
(Review)

pushingpushing entrapmententrapment

engulfmentengulfment

From: G. Wilde, J.H. Perepezko, Experimental Study of 
Particle Incorporation during Dendritic Solidification, Materials 
Science & Engineering A283, 2000, p.25-37. 

From: G. Wilde, J.H. Perepezko, Experimental Study of 
Particle Incorporation during Dendritic Solidification, Materials 
Science & Engineering A283, 2000, p.25-37. 

In Simulation:
Particle diameter: 10 & 40µm
Particle density: 2700 & 

5000Kg/m3

In Simulation:
Particle diameter: 10 & 40µm
Particle density: 2700 & 

5000Kg/m3

Distance below top meniscus (mm)Distance below top meniscus (mm)

From: B.G. Thomas, R. O’Malley and D. 
Stone, Measurement of Temperature, 
Solidification, and Microstructure in a 
Continuous Cast Thin Slab, TMS. 
Warrendale, PA, 1998, pp.1185-1199.

From: B.G. Thomas, R. O’Malley and D. 
Stone, Measurement of Temperature, 
Solidification, and Microstructure in a 
Continuous Cast Thin Slab, TMS. 
Warrendale, PA, 1998, pp.1185-1199.
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Particle Motion near Stopper Rod

Blue: Floating Particles

Red: Entrapped Particles
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Particles Attached to Nozzle Inner Wall
16% of the particles exiting the tundish 
touched an inner wall of the nozzle and 
another 10% touched the stopper rod.

16% of the particles exiting the tundish 
touched an inner wall of the nozzle and 
another 10% touched the stopper rod.

Locations where particles exit nozzle port.Locations where particles exit nozzle port.
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Particle Motion in Steel Caster
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Asymmetrical Inclusion Distribution 
in Solid Steel (Previous Work)
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Inflow
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Clogging SEN

Clogging 
Mold

Asymmetrical Flow Pattern

Asymmetrical inclusion capture observed in plants
Suspected Cause: Asymmetrical inlet flow

From: Jacobi, H., H.-J. Ehrenberg, and K. Wuennenberg, Development of the cleanness of different steels for flat and 

round products. Stahl und Eisen, 1998. 118(11): p. 87-95
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What Causes Asymmetrical 
Particle Transport in Simulation?
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Time after the first particle enters the liquid pool (s)
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Removed by top surface

Entrapped by shell front

Diameter (µm) 40 10 
Density (Kg/m3) 2700 5000 

Entrapment to shell 51.51% 50.79% 
Entrapment deeper 32.07% 32.77% 

Removal by top surface 8.49% 8.23% 
Removal by nozzle wall 7.83% 8.03% 

Particle Removal 
and Entrapment 

History

~8% particle removal 
by top surface
~8% particle removal 
by top surface
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particles out of all 
40000 particles 
entered mold.

Inclusions Distribution in Solid Slab
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Predicted Total Oxygen

Predicted oxygen concentration in final steel slab

(10ppm oxygen from continuous injection of particles from nozzle ports).

Predicted oxygen concentration in final steel slab

(10ppm oxygen from continuous injection of particles from nozzle ports).
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Conclusions
LES reproduces time-averaged and rms velocities which agree with 
measurements
Complex particle trajectories are seen in both the water model and the 
actual steel caster, showing the important influence of turbulence on 
particle transport.  The simulated particle trajectories as well as the 
predicted removal fractions are in agreement with water model 
measurements.
Water models is generally representative of modeling single-phase flow 
field in actual steel casters; however, more reverse flow was observed at 
lower recirculation zone in the water model than in the steel caster
Flow asymmetry due to turbulence nature causes particle transport 
asymmetry
Transport and capture of small particles (dp<40µm) are similar in the steel 
caster; removal of smalls particles by top surface in mold region is ~8%
With a steady oxygen content of 10ppm from inclusions in the molten steel 
supplied from the nozzle ports, intermittent patches of high oxygen content 
(50-150ppm) are found concentrated within 10-20mm beneath the slab 
surface, especially near the corner, and towards the narrow faces.

LES reproduces time-averaged and rms velocities which agree with 
measurements
Complex particle trajectories are seen in both the water model and the 
actual steel caster, showing the important influence of turbulence on 
particle transport.  The simulated particle trajectories as well as the 
predicted removal fractions are in agreement with water model 
measurements.
Water models is generally representative of modeling single-phase flow 
field in actual steel casters; however, more reverse flow was observed at 
lower recirculation zone in the water model than in the steel caster
Flow asymmetry due to turbulence nature causes particle transport 
asymmetry
Transport and capture of small particles (dp<40µm) are similar in the steel 
caster; removal of smalls particles by top surface in mold region is ~8%
With a steady oxygen content of 10ppm from inclusions in the molten steel 
supplied from the nozzle ports, intermittent patches of high oxygen content 
(50-150ppm) are found concentrated within 10-20mm beneath the slab 
surface, especially near the corner, and towards the narrow faces.
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