

Ladle Mixing and Inclusion Removal by Bubbles

Jun Aoki

Department of Mechanical &. Industrial Engineering University of Illinois at Urbana-Champaign

May, 2004

Acknowledgments

- Professor Brian G. Thomas
- Dr. Lifeng Zhang
- The Continuous Casting Consortium
- J. Peter and Dr. K. D. Peaslee; University of Missouri-Rolla
- Nucor Steel
 - Funding
 - Experimental measurements
- FLUENT Inc., Lebanon, NH
 - Providing software

Background

Key Phenomena in Ladle Refining

0 ntinuous 'stir

Casting

Consortium

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Jun Aoki 4

1. 3D Simulation of Ladle Mixing

- Develop quantitative computational models to predict flow and mixing in metallurgical vessels.
- Study 3D multiphase flow in a gas-stirred ladle.
- Study mixing during alloy addition in ladle refining.
 - Optimize gas blow rate and porous plug position
 & number.
 - Minimize refining time.
 - Improve homogeneity.

Model Outline

- 1. Flow field calculation in ladle with off-centered Ar injection
 - Standard k-ε model for turbulence
 - Discrete phase model for Ar bubbles

2. Species Diffusion model for alloy

Equations for turbulent flow of molten steel Consortium

Continuity

0

ntinuous

Casting

$$\cdot \underline{v} = 0$$

Momentum conservation

$$\rho\left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v}\right) = -\nabla p + (\mu + \mu_t)\nabla^2 \underline{v} - \rho \underline{g} + \sum_{bubbles} F_D(\underline{v} - \underline{v}_b)Q_g dt$$

Transport equation for turbulent kinetic energy

 ∇

$$\rho \left(\frac{\partial k}{\partial t} + \underline{v} \cdot \nabla k \right) = \nabla \left(\frac{\mu_t}{\sigma_k} \nabla k \right) + G_k - \rho \varepsilon$$

Transport equation for dissipation rate

$$\rho\left(\frac{\partial\varepsilon}{\partial y} + \underline{v}\cdot\nabla\varepsilon\right) = \nabla\left(\frac{\mu_t}{\sigma_{\varepsilon}}\nabla\varepsilon\right) + C_1\frac{\varepsilon}{k}G_k - C_2\rho\frac{\varepsilon^2}{k}$$

Turbulent viscosity

$$\mu_t = C_{\mu} \rho \frac{k^2}{\varepsilon}$$

Generation of k

$$G_k = \mu_t \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) \frac{\partial v_i}{\partial x_j}$$

: Time averaged fluid velocity V \underline{v}_{b} : Velocity of bubble : Density of fluid : Pressure D μ : Viscosity of fluid μ_t : Turbulent viscosity : Gravitational acceleration Q_g : Gas flow rate F_D : Drag force from bubble : Turbulent kinetic energy : Dissipation rate of k Е $C_l, C_2, C_{\mu}, \sigma_k, \sigma_{\varepsilon}$: **Empirical constants** (=1.44, 1.92, 0.09, 1.0, 1.3)

Equations for gas bubbles (Discrete phase model)

Force balance on bubble

$$\frac{d\underline{v}_b}{dt} = F_D(\underline{v} - \underline{v}_b) - \frac{(\rho - \rho_b)}{\rho_b}\underline{g}$$

Drag force

Particle Reynolds number

μ

$$F_D = \frac{18\mu}{\rho_b d_b^2} \frac{C_D \operatorname{Re}}{24} \qquad \operatorname{Re} = \frac{|\underline{v} - \underline{v}_b| d_b \rho}{\mu}$$

Drag coefficient (non-spherical model in FLUENT)

- : Density of bubble ρ_h
- d_h : Diameter of bubble
- C_D : Drag coefficient
- $b_1 \sim b_4$: Parameters in non-

spherical model

- : Shape factor Ø
- : Bubble position \underline{x}_{h}
- \underline{v}_{b} : Bubble fluctuation velocity
- C_I : Empirical constant (=0.15)

$$C_{D} = \frac{24}{\text{Re}} (1 + b_1 \text{Re}^{b_2}) + \frac{b_3 \text{Re}}{b_4 + \text{Re}}$$

$$b_1 \sim b_4 = f(\phi) \qquad \phi = \frac{s(equivolume \, sphere' \, s \, surface \, area)}{S(actual \, surface \, area)}$$

Bubble trajectory

Random walk model by turbulence

$$\underline{x}_{b} = \int \left(\underline{v}_{b} + \underline{v'}_{b}\right) dt \qquad \int \frac{\underline{v'}_{b}(t)\underline{v'}_{b}(t+s)}{\underline{\overline{v'}_{b}^{2}}} ds = C_{L} \frac{k}{\varepsilon}$$

Equations for alloy mixing

Turbulent diffusion of alloy element *i*

$$\frac{\partial}{\partial t} (\rho C_i) + \nabla \cdot (\rho \underline{v} C_i) = -\nabla \cdot \underline{J}_i$$

Diffusion flux of *i*

$$\underline{J}_{i} = -\left(\rho D_{i,m} + \frac{\mu_{t}}{Sc_{t}}\right) \nabla C_{i}$$

 C_i : Mass fraction of element *i* $D_{i,m}$: Diffusion coefficient of element *i* in fluid *m* J_i : Diffusion flux of *I* Sc_t : Turbulent Schmidt number (=0.7)

Ladle of Nucor Yamato Steel (Sketched by Jörg Peter)

Argon flow rate : $Q_{Ar}=0.17Nm^3/min = 5.055x10^{-3}kg/s$ Gas bubble size : $d_{Ar}=28.2mm$

$$d_{bubble} \approx 0.35 \left(\frac{Q^2}{g}\right)^{0.2}$$

Johansen and Boysan (1988)

Bubble shape : spheroid e(eccentricity)=3.61

 $e = 1 + 0.163 Eo^{0.757}$

Wellek, Agrawal and Skelland (1966)

$$Eo = \frac{gd_b^2(\rho - \rho_b)}{\sigma}$$

Shape factor : $\phi = s/S = 0.736$

e : Eccentricity

- *Eo* : Eotvos number (buoyancy force / surface tension force)
- σ : Surface tension

Liquid Steel Top Surface Boundary Conditions

1. Free shear surface

2. Partly constrained surface (simulating slag layer with eye)

Flow Field (FLUENT6.1 output)

0 ntinuous `stir

Casting

Consortium

Free Shear Surface BC, t=120sec

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Jun Aoki 14

Plume Velocity

 $v_{y,max} = 8.64 Q^{0.25} = 0.76 m/sec$

Gas Bubble Distribution in Ladle (FLUENT6.1 output)

Free Shear Surface BC, t=120sec

About 1,700 bubbles are distributed in ladle in steady state

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Jun Aoki 16

Effect of Top Slag on Flow field (FLUENT6.1 output)

Free Shear Surface BC (Without Slag)

Partly Constrained Surface BC (Simulating Slag layer with eye)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Jun Aoki 17

Conditions of Alloy Addition in Nucor Yamato Steel and in simulation

0 ntinuous 'stir

Casting

3D Mixing Behavior Casting Concentration Evolution after Alloy Addition (FLUENT6.1 output)

Mixing Behavior in xy centerline sections (FLUENT6.1 output)

Range: 0~2%

t=70sec

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Jun Aoki 20

Comparison Between Plant Data

- The multiphase turbulent flow field of Ar stirred ladle refining is simulated. Predicted plume velocity agrees well with an empirical equation.
- Off-center plume causes complex 3D swirling flow pattern.
- About 1700 bubbles are distributed in the steady flow field.
- Using turbulent species diffusion model, the mixing behavior can be reproduced. However, there is time delay in the plant data compared to the simulation which ignores melting.

- Find the cause of the delay of mixing time.
 - Consider alloy melting time and incorporate its effect into the model
- Apply model to predict other important metallurgical phenomena (e.g. interface reaction).
- Apply model to predict flow and mixing in other metallurgical vessels.

2. Inclusion removal by bubbles

Key Phenomena in Ladle Refining

0 ntinuous 'stir

Casting

Consortium

Film Drainage Time, t_f

$$t_{f} = \frac{64}{3} \mu \frac{\alpha^{2}}{4\sigma h_{Cr}^{2}} d_{p}^{3}$$

$$\alpha = \arccos\left(1 - 1.02 \left(\frac{\pi d_{p} \rho_{p} u_{R}^{2}}{12\sigma}\right)^{\frac{1}{2}}\right)$$

$$m_{Cr} = 2.33 \times 10^{-8} [1000\sigma(1 - \cos\theta)]^{0.16}$$

$$\frac{1.E - 02}{1.E - 03}$$

$$\frac{1.E - 03}{1.E - 04}$$

$$\frac{1.E - 03}{0.20 - 40 - 60 - 80 - 100}$$

$$\frac{1.E - 03}{0.20 - 40 - 60 - 80 - 100}$$

How many inclusions does a single bubble capture during its trajectory?

- Assume that the criterion for attachment is $\underline{t}_s > \underline{t}_f$.
- Develop model to compute t_s as a function of particle size, particle location and bubble size, compare previous theoretical values of t_f , and obtain a particle attachment rate.

•Particle attachment rate : R_A

Number of particle removed per unit bubble travel length

0 5 tinuous Casting Consortium

Bubble Velocity and Shape

Zhang and Taniguchi (2001)

Wellek, Agrawal and Skelland (1966)

0 5 tinuous Casting Consortium

Computational Domain and Boundary Conditions

Comparison between Streamline and Particle Trajectory

$(d_b=1mm, d_p=100\mu m, \rho_p=2800kg/m^3, \rho=7000kg/m^3)$

Particle Trajectory Released from 6 different Locations Casting (Time Averaged Turbulent Flow)

100µm silica inclusion trajectory toward 1mm Ar bubble

(Ignored wobbling motion)

$100 \mu m$ silica inclusion trajectory toward 6mm Ar bubble

(e=1.37)

Computation of Sliding Time, t_s

$d_b = 1$ mm, $d_p = 100 \mu$ m

Sliding Time Decrease for Increasing Particle Initial Distance from Bubble Axis

Attachment Area Fraction of Particle to Bubble Surface

Attachment Area Fraction, F_A

 $F_A = \left(\frac{d_{\rm c}}{d_{\rm h} + d}\right)^2$

Assumption: Inclusion will be attached to bubble surface if sliding time t_s is greater than film drainage time t_f . The value of d_c can be obtained by sliding time calculation.

Converting F_A (Attachment Area Fraction) to R_A (Particle Attachment Rate)

$$N = C_p S_C L = C_p S F_A L$$

$$R_A = C_p S_c = \pi \left(d_b + d_p\right)^2 C_p F_A$$

- N : Number of particle attached to bubble
- Cp : Particle concentration (m⁻³)
- S_C : The area within that particles will attach to the bubble (m²)
- S : The area that the bubble sweeps (m²)
- F_A : Attachment area fraction (= S_C/S)
- R_A : Particle attachment rate (m⁻¹)

Attachment Area Fraction (Time-averaged Turbulent Model)

0 ntinuous Istir

Casting

Consortium

Particle Attachment Area (Time-averaged Turbulent Model)

0 0 ntinuous Istir

Casting

Consortium

Particle Trajectory in Turbulent Flow Casting Consortium Applied Stochastic Random Walk Model Attachment Probability P_A:

Particle Traces Colored by Particle Residence Time (ms)

May 01, 2004 FLUENT6.1 (axi, dp, segregated, ske)

$100\mu m$ silica inclusion trajectory toward 1mm Ar bubble with stochastic motion by turbulent flow

University of Illinois at Urbana-Champaign • *Metals Processing Simulation Lab* • **Jun Aoki** 40

 $d_p=100\mu m$, $d_B=1mm$ 7 sets of 100 particles each

Calculation of F_A considering **Attachment Probability in Turbulence**

0

Atinuous

Casting

Consortium

Backside 'Attraction'

(Important for large particle attachment)

$500\mu m$ silica inclusion trajectory toward 1mm Ar bubble with stochastic motion by turbulent flow

- Inclusion attachment behavior to bubble is studied for 1mm-10mm bubbles with spheroid shape.
- The shape change of bubble may affect the attachment probability.
- Considering turbulent flow, statistical analysis is needed to predict attachment probability in realistic ladle refinement.

- Further validation with measurement.
- Further statistical analysis of inclusion attachment probability in turbulent flow
- Incorporate to the Big 3D Multiphase flow model, to produce better ladle refining simulation.