Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel

Research Conducted by:
University of Missouri-Rolla and University of Illinois at Urbana-Champaign

Funded by US DOE DE-FC36-03ID14279
Research Team

- **University of Missouri-Rolla**
 - Metallurgical and Ceramic Engineering Faculty
 - Kent Peaslee, David Robertson, Jeff Smith, Von Richards, Simon Lekakh
 - Metallurgical Engineering Students
 - Jörg Peter, Darryl Webber, Aryama Saikai, Neal Ross, Cole Eli

- **University of Illinois at Urbana-Champaign**
 - Mechanical and Industrial Engineering Faculty
 - Brian Thomas, Lifeng Zhang
 - Graduate student (fluid flow modeling)
 - Jun Aoki

- **Consortium of Eight Steel Companies**
 - Nucor, Nucor-Yamato, Gerdau Ameristeel, SMI, TXI-Chaparral, Bayou

- **Consortium of Three Engineering / Know-how Suppliers**
 - Corefurnace (Techint), Proware-Metsim, Heraeus Electronite

Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel
Overview of presentation

- General aspects of continuous steelmaking
- Examples of previous research
- Introducing a new conceptual process
 - Conceptual layout of process
 - Some information about each unit
 - Including unit that was modeled by Lifeng Zhang
Goal of Project

- Conduct R & D to design a continuous steelmaking process that starts with scrap and delivers high quality steel to the casting mold in one process.

FEATURES OF THE CONCEPT

- Fully continuous
- Scrap-based
- Continuous stirring of vessels (Bottom – blowing)
- Separated vessels
- Enclosed process

=> POTENTIAL BENEFITS

- High productivity, maximum automation
- Less Refining required
- Rapid mixing, high reaction rates near equilibrium
- No backflow
- Safer & environmentally friendly
Continuous Steelmaking

Benefits/Advantages

- Lower capital cost
 - Smaller vessels
 - Less cranes
- Higher capital utilization
- Less labor
- Easier to automate
- Less conversion time
- Better energy utilization
- Less off-gas (less KO61)
- More consistent quality
- Safer & healthier workplace
 - Enclosed process
 - Less batch processing

Risks/Challenges

- Logistics
 - Start-up / Shut-down
- Matching to casting speed
- Changes or upsets to system
 - Grade change
 - Delays
 - Off-specification
- Connectors
- Deslagging
- Elevation of Vessels
- Refractories
- Previous problems
- Difficult to run a pilot plant
- Lack of real operational data
Previous Research in Continuous Steelmaking

- Several processes were researched
 - Types of vessels:
 - CSTR - Completely Stirred Tank Reactor
 - Counter-current Reactor
 - Con-current Reactor
 - Emulsion / Spraying
 - Starting material
 - Hot metal
 - Scrap
 - Types of processes:
 - Continuous operating and periodically tapping (e.g. Consteel)
 - Continuous operating and tapping into ladle
 - Fully continuous operation (never tested)
Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel

PFR: WORCRA cont. steelmaking

- Australia, Sweden, Britain, USA
 - 1961 – 1990’s
 - Countercurrent flow
 - Different versions
 - 10 tph Oregon ‘72

Problems/Critics
- Backmixing = NO CONTROL
- Refractory wear
- Heat loss
- Unsatisfactory productivity

Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel

Emulsion CSTR: IRSID cont. st.

- **France**
 - 1963 – 1970’s
 - Emulsion & separation
 - FAST KINETICS

- **Problems/Critics**
 - Unknown mechanism = NO CONTROL
 - Low iron yield
 - Long settling times
 - Refractory wear

Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel
Equilibrium CSTR: AISI cont. st.

- USA
 - 1980’s - 1990’s
 - Equilibrium CSTR

- Problems/Critics
 - Kinetic limits
 - Low iron yield
 - High initial carbon and low final carbon
 - Clogging of connectors transporting FeO

The AISE Steel Foundation “The Making, Shaping and Treating of Steel” 11th edition, Steelmaking and Refining Volume, 1998, p. 748, Fig. 13.4

Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel
UMR’s Continuous Steelmaking Concept

- Processing time ≈ 1 ¼ hr
- Total liquid metal ≈ 130 t

- 4 Units - 100% scrap based
- Melting Unit
 - EBT AC (or DC) EAF melting
 - Consteel preheating & continuous feed
 - Remove P
- Oxidation Unit
 - CSTR to remove C
- Reduction Unit
 - CSTR to remove O & S
 - Alloying
- Enhancement Unit
 - Homogenization
 - Flotation

Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel
Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel

Heated holding ladle (for EAF or tundish), or pig the steel

0.15%C

Heat and hold (40-50 t)

Measure

2890°F

2910°F

2980°F

2880°F

2870°F

2830°F

012 3456 78 9 10 11 12 13 14 15 16

Conceptual layout for 110 tph process

Top view
Looking at steel surface

Side view

Melt

O₂ + Ar

Oxidize

Rede

Reduce

Alloys

Deoxidizer, CaO, MgO

CaO, MgO

Measure

Heating rods

Wire feeding adjustment

Mold

Measure
Consteel preheater and EAF

- Preheat tunnel (~100 ft)
 - Continuously transports and preheats scrap to ~800ºF
- Near-equilibrium EAF
 - Less FeO in the slag, higher Fe-yield
 - Continuously foaming slag
 - Electrode heats liquid - Liquid melts scrap
- Proven technology

http://www.corefurnace.com/meltshop_01.html
Preliminary Concepts – Melting Unit

- **Consteel preheater**
 - Post-combustion of CO from EAF and oxidation vessel
 - More efficient = gas composition consistent
 - Estimated scrap (and lime) temperature entering unit (800ºF)

- **Melting similar to current EBT AC (or DC) EAF**
 - ~50 tons of metal capacity
 - 40 MW of power (50 MW transformer)
 - ~30 minutes residence time for 110 tph
 - Continuous charging and tapping
 - Continuous oxygen blow
 - De-P and De-C (below 0.15%C) continuously
 - Carbon/oxygen injection for continuous foamy slag
 - Continuous de-slagging

- **Continuous Tapping**
Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel

- De-C
- Similar to continuous Q-BOP
 - Fruehan model
- Continuous de-slag

![Diagram of Oxidation Unit]

- 45 scf CO / t
- 32 scf Ar / t
- 111 t / hr
- 2890°F
- C = 0.15%
- 18 lbs flux / t
- 30 lbs slag / t
- 110 t / hr
- 2910°F
- C = 0.08%
- 54 scf O₂ / t
- 32 scf Ar / t

Steel weight = 20 t
Time = 12 min
Fluid flow in vessel

"Mix":
- Homogenize composition & temperature
- Mass transport (→ kinetics)
 - Bulk
 - Create interface (turbulent energy)
- Support floatation

Zhang, Lifeng “internal document”
UIUC, August 2003
Preliminary Concept for Reduction Unit

- **De-O & De-S**
- **Continuous de-slag**
- **Alloying**
 - Bulk (small pieces)
- **Temperature control**
 - Resistant heating
 - Avoid cooling
- **Calcium treatment**

- **110 t / hr**
 - 2910°F
 - O = 550 ppm
 - S = 300 ppm

- **12.4 lbs slag / t**
- **Deoxidizer, CaO, MgO**
- **2.2 lbs Al / t**
- **8.4 lbs flux / t**
- **64 scf Ar / t**
- **9.4 lbs SiMn / t**
- **5.2 lbs FeSi / t** (other alloys)
- **~1 kWhr / t**
- **110 t / hr**
 - 2880°F
 - O = 6 ppm
 - S = 35 ppm

- **64 scf Ar / t**
- **3.4 lbs CaSil / t**

Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel
Preliminary Concept for Final Unit

- Final Alloying
 - Wire injection adjustments
- Homogenization
- Inclusion floatation
- Minimize reoxidation
- Continuous transfer to mold

- Small alloy additions
- 110 t / hr 2880°F
- 2.2 lbs flux / t
- 32 scf Ar / t
- 32 scf Ar / t
- 2.4 lbs slag / t
- 110 t / hr 2830°F
- Steel weight = 34 - 50 t
 - Time = 20 - 30 min
 - 1 – 3 strands

Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel
Continuous Monitoring

- Con®Cept: Temperature & Chemistry
 - Laser – lens – spectrometer (LMF & EAF, etc.)
- Inclusion sensor*
 - Size & Number

Temperature Chemistry

Ramaseder et al. “Continuous chemical analysis of liquid steel” Steel Times International, Nov 02, p. 30

Pillwax et al. “VAI-ConCept – A Performance Package for AOD converters” AISE Steel Technology, Vol. 80, No. 9, Sept 03, p. 93
Summary

- Continuous steelmaking has the potential to increase profits
- Extensive previous research exists
- New conceptual process is scrap based and fully continuous
- Fluid flow modeling is crucial during the design of the vessels