

Investigation of Oscillation Marks and Hook Formation in ULC Steels using Metallurgical Analysis and Models

Ho – Jung Shin

Department of Mechanical & Industrial Engineering University of Illinois at Urbana-Champaign

May 10, 2004

Acknowledgement

- Professor Brian G. Thomas
- Professor Seon-Hyo Kim
- Dr. Ya Meng
- Mr. Go-Gi Lee, POSTECH
- Continuous Casting Consortium
- POSCO

• Initial solidification during continuous casting of steel slabs greatly affects surface quality of slabs

Most operation parameters have strong interdependencies

This makes prediction and interpretation of initial solidification phenomena difficult

Importance of Initial Solidification

- Initial solidification behavior affects the formation of oscillation marks (OM) and subsurface hooks
- Initial solidification features related to surface quality problems
 - Deep oscillation mark : Transverse crack formation
 - Deep hook : Easy Entrapment of mold flux and inclusion-laden gas bubbles

< Bubble captured by hook >

Test Conditions (2003)

- Steel grade : Ultra low carbon steel ($C \leq \ 0.005\%$)
- Slab thickness : 230 mm
- Nozzle submergence depth : ~ 160 mm
- Oscillation asymmetry : 59 %

	Test 1	Test 2	Test 3	Test 4	Test 5	
Casting speed (m/min)	1.75	1.42	1.22	1.47	1.47	
Pour Temperature (°C)	1560	1564	1564	1571	1571	
Electromagnetic current (A)	313	234	0	277	0	
Slab width (mm)	1300			1570		
Working mold length (mm)	775	796	790	782	774	
Oscillation stroke (mm)	7.5	6.83	6.43	6.93	6.94	
Oscillation frequency (mm)	187	155	135	159	160	

Melting	Softening, Melting, Flowing point (°C)						
Characteristics	1,145						
	Density (g/ml)	Viscosity (poise) Solid Te					
	2.7	1400 °C	1300 °C	1200 °C	1100 °C	1,101	
Physical		1.28	2.62	5.85	~ 1000		
Properties	Crystal Temp. (°C)	Crystal Ratio (%)		SF-Tension (d/cm)		Shape	
		6.80	0	48.72		Granule	

University of Illinois at Urbana-Champaign • *Metals Processing Simulation Lab* • *Ho-Jung Shin* 7

Differences of cooling water temperature and mean heat flux

	Measured ΔT (°C)	Measured mean heat flux (kw/m ²)	Calculated ΔT (°C)	Calculated mean heat flux (kw/m ²)
Test 1	6.75	1665.9	6.75	1709.4
Test 2	5.78	1428.5	5.78	1422.8
Test 3	5.72	1413.1	5.71	1417.2
Test 4	7.08	1429.8	7.08	1450.6
Test 5	7.49	1515.9	7.46	1544.8

Distance of	of thermocou	ole]	location	below	meniscus
Distance	n uner mocou		location		membeub

	Test 1	Test 2	Test 3	Test 4	Test 5
1 st (mm)	173.8	160.1	149.3	162.6	159.7
2 nd (mm)	126.2	128.9	113.8	133.2	129.0
3 rd (mm)	115.7	109.7	102.6	113.3	112.0

Mean temperature from hot thermocouple

	Test 1	Test 2	Test 3	Test 4	Test 5
1 st (℃)	173.8	160.1	149.3	162.6	159.7
2 nd (℃)	126.2	128.9	113.8	133.2	129.0
3 rd (℃)	115.7	109.7	102.6	113.3	112.0

Calibration with measured temperatures of thermocouples

Matching model with mold temperature

University of Illinois at Urbana-Champaign • *Metals Processing Simulation Lab* • *Ho-Jung Shin* 10

Heat Flux Comparison

Measurement of OM Profile

Average Results of OM Profiles

	OM Pitch (mm)		OM Depth	OM Width	Oscillation stroke	Oscillation frequency
	Calculated	Measured	(mm)	(mm)	(mm)	(cycle / minute)
Test 1	9.35	9.44	0.251	6.12	7.50	187
Test 2	9.16	9.10	0.328	6.76	6.84	155
Test 3	9.00	8.91	0.280	6.66	6.42	135
Test 4	9.20	9.36	0.314	6.29	6.95	160
Test 5	9.19	9.09	0.272	6.57	6.92	159

Stoke Set Point = $A_s + B_s \times V_c$ Frequency Set Point = $A_F + B_F \times V_c$ A_F, B_F, A_S, B_S : Coefficients, F: Frequency, S: Stroke, V_c : Casting speed Same tendency with stroke and frequency of mold

oscillation

Consortium Relation between Level Fluctuation and OM Pitch

- Standard deviation of level fluctuation : average value during 45 seconds while the samples were produced
- OM pitch difference = (Measured OM Pitch) (Calculated OM Pitch)
- * Calculated OM Pitch = casting speed / Oscillating frequency

Relation OM Pitch and Depth

OM pitch difference = (Measured OM Pitch) – (Calculated OM Pitch) * Calculated OM Pitch = casting speed / Oscillating frequency

Definition of Hook Characteristics

Measured Hook Characteristics

	Effective hook depth (mm)	Hook Length (mm)	Hook Angle (degree)	Hook Shell thickness (mm)	OM Depth (mm)
Test 1	1.11	1.92	27.0	0.462	0.282
Test 2	1.22	1.76	30.9	0.520	0.300
Test 3	1.29	1.60	34.6	0.723	0.268
Test 4	1.21	1.83	26.1	0.557	0.347
Test 5	1.06	1.65	28.0	0.463	0.236

CON 1D Predictions at Meniscus Region

Comparison hook shell thickness with modeling Casting Consortium

University of Illinois at Urbana-Champaign • *Metals Processing Simulation Lab* • *Ho-Jung Shin* 25

< Test 3 >

University of Illinois at Urbana-Champaign • *Metals Processing Simulation Lab* • *Ho-Jung Shin* 26

Predicted shell thickness at $T_p^{}$ (mm)

- Scatter due to local variations in undisturbed hook solidification time or level fluctuation

Relation between EHD and shell thickness

0

A Dinuous

Casting

Consortium

Relation between Hook and Superheat

Tundish Temperature - Liquidus Temperature (°C) (Superheat)

Superheat = Tundish Temperature – Liquidus Temperature

	Length of solid shell during T _p (mm)	Length of left solid shell (mm)	Remelted length of solid shell (mm)	Tundish temperature (°C)	Liquidus temperature (°C) - CON 1D	Occurrence hook rate (%)
Test 1	6.57	1.92	4.65	1560	1533.9	97.8
Test 2	6.52	1.76	4.76	1564	1533.9	91.8
Test 3	6.32	1.60	4.72	1564	1533.9	93.5
Test 4	6.50	1.83	4.67	1571	1533.9	67.7
Test 5	6.51	1.65	4.85	1567	1533.9	100

University of Illinois at Urbana-Champaign • *Metals Processing Simulation Lab* • *Ho-Jung Shin* 29

Occurrence rate of Hook with Superheat

C Stinuous Casting Consortium

- Assumption : no hook occurrence case and segregation hook type are all melted
- EMS off : little effect to melt shell
- EMS on : longer shell melted with increasing superheat

- Modeling analysis of shell formation focusing on initial hook formation was conducted with CON1D and parameters of real plant operation
- Measurement of OM depth, pitch and hook shape were made from samples of continuous casting slabs for different casting speeds, EMS power and superheat
- OM pitch is directly related to mold level fluctuations and deviations indicate the stability of level during production
- Increasing OM pitch deviation is correlated with deeper oscillation mark depth
- Hook shell thickness can be predicted using CON1D and the hook shell thickness at top of OM correlates with positive strip time
- Effective hook depths increase in proportion to hook shell thickness
- Hook length correlates with size and shape : longer hooks are deeper EHD
- Increasing superheat decreases hook length, likely due to melting.
- Increasing EMS correlates with more OM pitch deviation, level fluctuation and deeper hooks
- Increasing casting speed effect is complex because it increases both level fluctuation and superheat.