

ISSTech 2003, Indianapolis, IN

Interfacial Friction-Related Phenomena in Continuous Casting with Mold Slags

Ya Meng and Brian G. Thomas

University of Illinois at Urbana-Champaign

April 29, 2003

1

Consortium CC Phenomena with Slag Layers

Sample of Slag Layer

(a) Macroscopic film including corner

(b) Crystalline and glassy layers

(c) Close-up of the crystalline layer growing into glassy layer

1D transient heat conduction:

ontinuous Istin

Casting

onsortium

Mass balance & Heat Transfer in the Gap

Mass balance:

$$\frac{Q_{slag} \times V_c}{\rho_{slag}} = V_{solid} d_{solid} + \int_0^{d_{liquid}} V_{liquid} dx + V_c \overline{d}_{osc}$$

Heat transfer:

$$q_{int} = h_{gap} \left(T_s - T_{mold} \right)$$

Mold Slag Properties

Constant slag viscosity

Realistic slag viscosity (n=1.6)

Heat Transfer Results

Slag Crystallization Behavior onsortium

0 ntinuous astir

Casting

R.J. O'Malley, 82nd Steelmaking Conference, pp.13-33.,1999

Shell Stress on Mold Wall

Critical Consumption Rate

Glassy mold flux: lower consumption causes fracture near mold exit Critical consumption rate: 0.33kg/m² for 1.0m/min casting speed

^{'ti}nuous Casting

Crystalline mold flux: lower consumption causes fracture near meniscus Critical consumption rate, $Q_{s/ag}$: 0.285kg/m² for 1.0m/min casting speed

University of Illinois at Urbana-Champaign • *Metals Processing Simulation Lab* • **Ya Meng** 16

Critical Consumption Rate

Shear Stress on the Mold Wall during Oscillation Cycle

attached solid slag layer

moving solid slag layer

Friction Force during Oscillation Cycle

University of Illinois at Urbana-Champaign • *Metals Processing Simulation Lab* • **Ya Meng**

18

Friction Force

Nakato, JOM, Vol. 36(3), 1984, p44-50

- Model development:
 - > steel solidification and heat transfer model (CON1D)
 - > liquid slag flow model
 - > solid slag stress model
- Model validation:
 - > comparisons with numerical models
 - > measurements on operating casters
- The slag temperature-viscosity curve determines:
 - > shear stress along the mold wall
 - > critical consumption rate
 - > possible slag fracture position
- The friction measured in real casters might be due to:
 - intermittent moving slag layer
 - > excessive taper
 - > mold misalignment