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Objectives

! Fluid flow and inclusion clogging simulation in SEN
! Fluid flow and inclusion removal from continuous

casting mold (trajectory calculation model, lumped
collision model)

! Similarity criteria for particle motion in water and in
liquid steel

! Fluid flow and inclusion clogging simulation in SEN
! Fluid flow and inclusion removal from continuous

casting mold (trajectory calculation model, lumped
collision model)

! Similarity criteria for particle motion in water and in
liquid steel
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Background—Review on Steel
Cleanliness and Inclusions

Background—Review on Steel
Cleanliness and Inclusions
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Metallographical Microscope Observation (MMO);
Image Analysis (IA);
Sulfur Print;
Slime (Electrolysis);
Electron Beam melting (EB);
Cold Crucible (CC) melting;
Scanning Electron Microscopy (SEM);
Electron Probe Micro Analyzer (EPMA)
Optical Emission Spectrometry (OES-PDA)
Mannesmann Inclusion Detection (MIDAS)
Laser-Diffraction Particle Size Analyzer (LDPSA)
Conventional Ultrasonic Scanning (CUS)
Cone Sample Scanning
Fractional Thermal Decomposition (FTD)
Laser Microprobe Mass Spectrometry (LAMMS)
X-ray Photoelectron Spectroscopy (XPS)
Auger Electron Spectroscopy (AES)
Photo Scattering Method
Coulter Counter Analysis
Liquid Metal Cleanliness Analyzer (LIMCA)
Ultrasonic Techniques for Liquid System

Metallographical Microscope Observation (MMO);
Image Analysis (IA);
Sulfur Print;
Slime (Electrolysis);
Electron Beam melting (EB);
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Scanning Electron Microscopy (SEM);
Electron Probe Micro Analyzer (EPMA)
Optical Emission Spectrometry (OES-PDA)
Mannesmann Inclusion Detection (MIDAS)
Laser-Diffraction Particle Size Analyzer (LDPSA)
Conventional Ultrasonic Scanning (CUS)
Cone Sample Scanning
Fractional Thermal Decomposition (FTD)
Laser Microprobe Mass Spectrometry (LAMMS)
X-ray Photoelectron Spectroscopy (XPS)
Auger Electron Spectroscopy (AES)
Photo Scattering Method
Coulter Counter Analysis
Liquid Metal Cleanliness Analyzer (LIMCA)
Ultrasonic Techniques for Liquid System

Direct Evaluation Methods of Steel CleanlinessDirect Evaluation Methods of Steel Cleanliness

Total oxygen measurement
Nitrogen pick-up
Dissolved aluminum loss measurement
Slag composition measurement
Submerged entry nozzle (SEN) clogging

Total oxygen measurement
Nitrogen pick-up
Dissolved aluminum loss measurement
Slag composition measurement
Submerged entry nozzle (SEN) clogging

Direct MethodsDirect Methods Indirect MethodsIndirect Methods
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"""" No single ideal method can evaluate steel cleanliness.
"""" Several methods should be coupled together
"""" No single ideal method can evaluate steel cleanliness.
"""" Several methods should be coupled together

Steel Cleanliness EvaluationSteel Cleanliness Evaluation

1) Nippon Steel Co.: T.O measurement and EB melting for small inclusions, Slime
method and EB-EV for large inclusions;

2) Usinor: T.O measurement with FTD, OES-PDA, IA and SEM for small inclusions,
Electrolysis and MIDAS for large inclusions.

3) Baosteel: T.O measurement, Metallographical Microscope Observation, XPS, and
SEM for small inclusions; Slime and SEM for large inclusions; nitrogen pickup; slag
composition analysis.

1) Nippon Steel Co.: T.O measurement and EB melting for small inclusions, Slime
method and EB-EV for large inclusions;

2) Usinor: T.O measurement with FTD, OES-PDA, IA and SEM for small inclusions,
Electrolysis and MIDAS for large inclusions.

3) Baosteel: T.O measurement, Metallographical Microscope Observation, XPS, and
SEM for small inclusions; Slime and SEM for large inclusions; nitrogen pickup; slag
composition analysis.
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Effect of Stirring Power on Steel CleanlinessEffect of Stirring Power on Steel Cleanliness
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" Stirring helps to lower oxygen contents

" Too vigorous stirring is even bad for inclusion removal.

" Stirring helps to lower oxygen contents

" Too vigorous stirring is even bad for inclusion removal.
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Deeper Tundish Lowers InclusionsDeeper Tundish Lowers Inclusions
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From the SEN clogging (N—inclusion number
index by the methods of MIDAS)
From the SEN clogging (N—inclusion number
index by the methods of MIDAS)

Asymmetrical flow pattern in mold caused by:
1) Nozzle clogging
2) Turbulence

Asymmetrical flow pattern in mold caused by:
1) Nozzle clogging
2) Turbulence

Asymmetrical Mold Flow Pattern Lowers Steel CleanlinessAsymmetrical Mold Flow Pattern Lowers Steel Cleanliness

Stopper rodStopper rod
InflowInflow

PowderPowder CloggingClogging SENSEN
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From transient behavior of fluid flowFrom transient behavior of fluid flow



10University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lifeng Zhang (2002)

Inclusion Attachment to BubbleInclusion Attachment to Bubble

" Good for inclusion removal if bubbles float out;

" Bad for steel cleanliness if bubbles was entrapped by the solidifying shell

" Good for inclusion removal if bubbles float out;

" Bad for steel cleanliness if bubbles was entrapped by the solidifying shell

Observed inclusions number attached to
different size bubbles for LCAK steel slab
Observed inclusions number attached to
different size bubbles for LCAK steel slab

Magnification factor: 500Magnification factor: 500

Example of inclusion captured by a bubbleExample of inclusion captured by a bubble



11University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lifeng Zhang (2002)

“Elephant skin”“Elephant skin”

Casting disruption, automatic

level control outage

Casting disruption, automatic

level control outage

Casting length (m)Casting length (m)

Number of defectsNumber of defects

Variation in cleanliness at the start of casting with
accidental disruption of automatic level control
Variation in cleanliness at the start of casting with
accidental disruption of automatic level control

The surface level change can be
induced by
" Oscillation of mold
" Cast speed change
" Too much gas injection
" Asymmetrical flow in mold

The surface level change can be
induced by
" Oscillation of mold
" Cast speed change
" Too much gas injection
" Asymmetrical flow in mold

Level Control Variations Cause DefectsLevel Control Variations Cause Defects

Trace investigation at WISCO
(China): inclusions from slag
entrainment in slab, 5.17% from ladle
slag, 40.4% from tundish flux and
13.52% from mold powder.

Trace investigation at WISCO
(China): inclusions from slag
entrainment in slab, 5.17% from ladle
slag, 40.4% from tundish flux and
13.52% from mold powder.
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Inclusion Entrapment to SEN
Lining Walls

Inclusion Entrapment to SEN
Lining Walls
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UniformInlet condition

5000Particle density (kg/m3)

10, 20, 48, 90, 200,300Particle size (diameter) (mm)

9.54 ×10-7Fluid kinetic viscosity (m2/s)

7020Fluid density (kg/m3)

0.02Casting speed (m/s)

0.0065Liquid steel flow rate (m3/s)

10Bottom well depth (mm)

15 degPort angle (down)

30Port thickness (mm)

65 × 80Port width× port height (mm × mm)

300SEN submergence depth (mm)

717SEN length (mm)

80SEN bore diameter (mm)

ValueParameters

SEN Simulation Parameters (Case C)SEN Simulation Parameters (Case C)

Random-Walk, 15000 particles each sizeInclusion motion model

k-ε two equation, FluentTurbulence
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Mesh for Fluid Flow and Inclusion Motion Simulation in SENMesh for Fluid Flow and Inclusion Motion Simulation in SEN
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Inclusion Entrapment to Walls of SENInclusion Entrapment to Walls of SEN

180000 inclusions to different places:

Nozzle Bottom: 4%

Nozzle Port Walls:10%

Nozzle bore wall: 17%

Total: 31%

Inclusions fraction to
walls is independent on
inclusions sizes.
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Most particles are entrapped at bottom.

Nozzle Clogging SimulationNozzle Clogging Simulation
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Assumptions:

1) Once inclusions collide with wall, they are entrapped;

2) Uniform clog distribution along each SEN surface;

3) Total oxygen entering nozzle is 30ppm.

Assumptions:

1) Once inclusions collide with wall, they are entrapped;

2) Uniform clog distribution along each SEN surface;

3) Total oxygen entering nozzle is 30ppm.

Estimate Clog Growth RateEstimate Clog Growth Rate
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Thickness: m

T.O: total oxygen, ppm

W: Casting weight, tonne

α: Fraction of inclusions collide with walls

ρp: Inclusion density, 3500kg/m3

S, surface area of SEN inner walls, m2

Thickness: m

T.O: total oxygen, ppm

W: Casting weight, tonne

α: Fraction of inclusions collide with walls

ρp: Inclusion density, 3500kg/m3

S, surface area of SEN inner walls, m2

Conclusion: The current inclusion entrapment model (once colliding
with wall inclusions are entrapped) overpredict the effect of
entrapment of inclusion to SEN walls.

Conclusion: The current inclusion entrapment model (once colliding
with wall inclusions are entrapped) overpredict the effect of
entrapment of inclusion to SEN walls.
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Fluid Flow and Inclusion Motion
in Continuous Casting Mold

Fluid Flow and Inclusion Motion
in Continuous Casting Mold
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Nozzle simulation resultInlet condition

5000/2700Particle density (kg/m3)

0.5-300Particle size (diameter) (µm)

0.954 ×10-6Fluid kinetic viscosity (m2/s)

7020Fluid density (kg/m3)

0.02Casting speed (m/s)

0.00325Average inlet flow rate (half mold) (m3/s)

2.55/1.3/0.25Domain height/width/thickness (m)

0.3Submergence depth (m)

26o (down)Inlet jet angle

15o (down)Nozzle angle

0.065×0.080Inlet port size ( width× height) (m × m)

ValuesParameters

Parameters for Mold (Case C)Parameters for Mold (Case C)

Escape from top surface and open bottom,
trapped at narrow and wide face walls

Boundary condition for inclusions

Random walk model , by FluentInclusion motion model

k-ε, by FluentTurbulence model
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Inclusion Removal by Trajectory
Calculation

Inclusion Removal by Trajectory
Calculation
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Inclusion Size Distribution in SteelInclusion Size Distribution in Steel

Number density distributionNumber density distribution Mass fraction size distributionMass fraction size distribution

1) Total oxygen content: Mold 31.4ppm, Slab surface
27.2ppm, Slab other places: 24.4ppm

2) The inclusion size distribution of tundish sample above
outlet is used as the mold inlet inclusion size distribution.
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Fraction of Inclusion to Top SurfaceFraction of Inclusion to Top Surface

1) For the inclusions smaller than 50 µm, the fraction to the top surface is
independent on inclusion size, and this fraction is around 6% after
40seconds.;

2) Beyond that, the removal to top surface increases with size increasing.

1) For the inclusions smaller than 50 µm, the fraction to the top surface is
independent on inclusion size, and this fraction is around 6% after
40seconds.;

2) Beyond that, the removal to top surface increases with size increasing.
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Fraction of Inclusion to Narrow Face and Wide FaceFraction of Inclusion to Narrow Face and Wide Face

Inclusions captured by the wide face and narrow is independent on inclusion sizes.

28% inclusions are captured by narrow face, and 22% are captured by wide face.

Inclusions captured by the wide face and narrow is independent on inclusion sizes.

28% inclusions are captured by narrow face, and 22% are captured by wide face.
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13.244%Remaining in domain

6.622%Wide Face

8.428%Narrow Face

1.86%Top surface

T.OFractions

T.O entering mold: 30ppmT.O entering mold: 30ppm

Inclusion Fractions by Trajectory CalculationInclusion Fractions by Trajectory Calculation
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Inclusion Removal by Lumped
Collision Model

Inclusion Removal by Lumped
Collision Model
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S is the source term for inclusion floating removal
rate, which is decided by trajectory calculations.
S is the source term for inclusion floating removal
rate, which is decided by trajectory calculations.
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When considering only removal to top
surface, T.O. is around 27ppm after several
hundreds seconds; When considering both
removal to top surface and entrapment to
solidifying shell, T.O. is asymptotic to
14ppm. Industrial T.O measurement of slab
is 24.4ppm. Thus the real inclusion removal
curve should be between the two cases.
Thus the current entrapment to solidifying
shell overpredict the inclusion removal.

When considering only removal to top
surface, T.O. is around 27ppm after several
hundreds seconds; When considering both
removal to top surface and entrapment to
solidifying shell, T.O. is asymptotic to
14ppm. Industrial T.O measurement of slab
is 24.4ppm. Thus the real inclusion removal
curve should be between the two cases.
Thus the current entrapment to solidifying
shell overpredict the inclusion removal.
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Inclusion Size Distribution as Function of Collision ModelInclusion Size Distribution as Function of Collision Model
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Nozzle simulation result

5000

300

0.954 ×10-6

7020

0.02

0.00325

2.55/1.3/0.25

0.3

26o (down)

15o (down)

0.065××××0.080

Case C

LES simulation of nozzleInlet condition

2700/5000Particle density (kg/m3)

300Particle size (diameter) (µm)

0.954 ×10-6Fluid kinetic viscosity (m2/s)

7020Fluid density (kg/m3)

0.0152Casting speed (m/s)

0.00344Average inlet flow rate (half mold) (m3/s)

4.0/1.83/0.238Domain height/width/thickness (m)

0.15Submergence depth (m)

25o (down)Inlet jet angle

25o (down)Nozzle angle

0.051××××0.056Inlet port size ( width× height) (m × m)

Case AParameters

Inclusion Removal for Two CasesInclusion Removal for Two Cases

Escape from top surface and open bottom, trapped
at narrow and wide face walls

Boundary condition for inclusions

Random walk model, by FluentInclusion motion model

15000Inclusions number injected

k-ε, by FluentTurbulence model
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Inclusion Removal for Two CasesInclusion Removal for Two Cases

Because case C has a shorter domain height and larger
submergence depth, thus inclusions fraction to outlet (bottom) is
higher than case A. The inclusion fraction entrapped to wide
face is much lower than case A. Thus, the real difference might
not be so large.

Because case C has a shorter domain height and larger
submergence depth, thus inclusions fraction to outlet (bottom) is
higher than case A. The inclusion fraction entrapped to wide
face is much lower than case A. Thus, the real difference might
not be so large.

Inclusions density: 5000 kg/m3Inclusions density: 5000 kg/m3
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Effect of Inclusion Density on Inclusion RemovalEffect of Inclusion Density on Inclusion Removal

Smaller density inclusions more easily float out to the top
surface, larger density inclusion more easily escape from bottom
(outlet).

Smaller density inclusions more easily float out to the top
surface, larger density inclusion more easily escape from bottom
(outlet).
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The Accuracy of the Similarity
Criterion of Stokes Velocity for
the Particle Motion in Water
and in Liquid Steel

The Accuracy of the Similarity
Criterion of Stokes Velocity for
the Particle Motion in Water
and in Liquid Steel
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Simulation Parameters for Water System and Steel SystemSimulation Parameters for Water System and Steel System

[1] Yuan, Q., S.P. Vanka, and B.G. Thomas. Large Eddy Simulatios of Turbulence Flow and Inclusions
Transport in Continuous Casting of Steel. Turbulence and Shear Flow Phenomena Second International
Symposium, June 27-29. 2001: KTH, Stockholm

[1] Yuan, Q., S.P. Vanka, and B.G. Thomas. Large Eddy Simulatios of Turbulence Flow and Inclusions
Transport in Continuous Casting of Steel. Turbulence and Shear Flow Phenomena Second International
Symposium, June 27-29. 2001: KTH, Stockholm

LES pipe simulation results[1]Inlet condition

0.954 ×10-61.0 ×10-6Fluid kinetic viscosity (m2/s)

7020998Fluid density (kg/m3)

0.01520.0152Casting speed (m/s)

0.003440.00344Average inlet flow rate (m3/s)

0.2380.238Mold/Domain thickness (m)

1.831.83Mold/Domain width (m)

2.1522.152Mold/Domain height (m)

0.1500.150Submergence depth (m)

25o25oInlet jet angle

25o25oNozzle angle

0.051×0.0560.051×0.056Nozzle port size/ Inlet port size (x×y) (m)

Liquid SteelWater
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Two holes on lower part of one wide faceOutlet

9882700Particle density (kg/m3)

3.8mm473 µm, 300 µm,
200 µm

Particle size

1.0×10 - 60.954×10-6Viscosity (m2/s)

Same (The previous water model case)Mold Geometry

Water ModelSteel Caster
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The removal fraction of the 200µm inclusion in liquid steel is
almost similar with the mentioned 3.8mm particle in water
model.

The removal fraction of the 200µm inclusion in liquid steel is
almost similar with the mentioned 3.8mm particle in water
model.
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Conclusions

1) Of inclusions entering nozzle, 31% collide with nozzle surfaces (18%
with SEN walls, 4% with bottom, 9% with port walls).

2) For the inclusions smaller than 50 µm, the fraction to the top surface is
independent of inclusion size, and this fraction is around 6%. For the
inclusions larger than 50 µm, their removal to top surface increases
with increasing size.

3) Inclusion fraction captured by the wide and narrow face is independent
of inclusion size.

4) 28% of inclusions are captured by narrow face, and 22% are captured
by wide face.

5) Smaller density inclusions more easily float out to the top surface,
larger density inclusion more easily escape from bottom (outlet).

6) The current entrapment model at the walls overpredicts inclusion
removal.

7) Standard similarity criteria for particle motion in water model and in
liquid steel (Stoke and Allen) are not accurate enough.
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Further Investigations

1 The transient fluid flow simulation for the steel caster mold.

2 The suitable entrapment model of inclusion to the solidified
shell.

3 The inclusions collision and coagulation simulation and its
contribution to inclusion size growth and removal.

4 The interaction between inclusions and bubbles and its
contribution to inclusion motion (removal) from mold.


