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Improvements to CON1D7
Ideal taper calculation, including the effect of 
mold distortion, flux layer thickness and funnel 
mold extra length (if present) 
Specific heat in mushy zone based on phase 
fraction
Update phase diagram according to user input 
solidus/liquidus temperature 
Heat flux input above meniscus
Curved mold for 2D mold temperature model
Friction model

Ideal taper calculation, including the effect of 
mold distortion, flux layer thickness and funnel 
mold extra length (if present) 
Specific heat in mushy zone based on phase 
fraction
Update phase diagram according to user input 
solidus/liquidus temperature 
Heat flux input above meniscus
Curved mold for 2D mold temperature model
Friction model
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Ideal Taper

Ideal taper for slab and billet:

xtaper: ideal taper (mm)
xshell: steel shell shrinkage (mm)
xmold: mold wall disortion (mm)
xgap: flux layer thickness (=dliquid+dsolid) (mm)
xother: extra mold geometry change, e.g. funnel mold (mm)

supscript “o” means value at the reference position, where shell 
shrinkage begins

Ideal taper for slab and billet:

xtaper: ideal taper (mm)
xshell: steel shell shrinkage (mm)
xmold: mold wall disortion (mm)
xgap: flux layer thickness (=dliquid+dsolid) (mm)
xother: extra mold geometry change, e.g. funnel mold (mm)

supscript “o” means value at the reference position, where shell 
shrinkage begins

( ) ( ) ( )= − − − − − −o o o
taper shell mold mold gap gap other otherx x x x x x x x
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Mold Distortion: Billet

Billet mold distortion:

αmold:mold expansion coefficient (K-1)
W: mold width (mm)
Thot: mold hot face temperature (oC)
Tcold: mold cold face temperature (oC)

Billet mold distortion:

αmold:mold expansion coefficient (K-1)
W: mold width (mm)
Thot: mold hot face temperature (oC)
Tcold: mold cold face temperature (oC)

2 2
hot cold

mold mold
T TWx α + = ⋅ ⋅ 
 
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Mold Distortion: Slab
Slab mold distortion:

Wide face expansion, xWF :

T’hot, T’cold : linearized mold hot face and cold face temperature (oC)

Narrow face distortion, xNF :

thot, tcold : mold hot layer and cold layer thickness (mm)

Ehot, Ecold : mold hot layer and cold layer elastic modulus (Pa)

Slab mold distortion:
Wide face expansion, xWF :

T’hot, T’cold : linearized mold hot face and cold face temperature (oC)

Narrow face distortion, xNF :

thot, tcold : mold hot layer and cold layer thickness (mm)

Ehot, Ecold : mold hot layer and cold layer elastic modulus (Pa)

' '

2 2
hot cold

WF mold
T TWx α
 +

= ⋅ 
 

mold NF WFx x x= −

( )( )( ) ( )2
_2

2 3

3

4 6 4

hot cold hot cold hot cold
NF total mold

cold

hot hot hot hot cold cold

cold cold cold cold hot hot

T T t t
x Z z z

t K

t t E t E tK
t t E t E t

α α− − +
= ⋅ −

   
= + + + +   

   
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Funnel Mold - Perimeter Calculation
Funnel mold (Nucor Steel)Funnel mold (Nucor Steel)

a: half funnel width

b: funnel depth at given position

R: funnel radius

D: total funnel height

a: half funnel width

b: funnel depth at given position

R: funnel radius

D: total funnel height

( )

1sin

2 2

2 2

2 2

a +bR=
4b

Total perimeter = 2 N +W +2x

extra length x= 2R - a

a +b 2abx a
2b a +b

θ

−  = − 
 

 a
 b

 R
 A

 A

 D

b

A-A

θ

 W

 W+2x
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Specific Heat
Specific heat in mushy zone based on phase fractionSpecific heat in mushy zone based on phase fraction
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Previous Work

Pseudo-transient analytical model of heat flux 
and flow in interfacial liquid flux layer
Stress model in solid flux layer
Mold friction depends on powder flux 
consumption rate and solid flux velocity

Predicting mold flux critical consumption rate

Pseudo-transient analytical model of heat flux 
and flow in interfacial liquid flux layer
Stress model in solid flux layer
Mold friction depends on powder flux 
consumption rate and solid flux velocity

Predicting mold flux critical consumption rate
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Review: Liquid Layer Transient Model
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Review: Solid Layer Stress Model 
σzbσzb

τstaticτstatic

σz0 (z+∆z)σz0 (z+∆z)

τs/lτs/l

dsds

σz0 (z)σz0 (z)

σyσy σyσy

Upstroke

Maximum static friction 
limits stress 

Upstroke

Maximum static friction 
limits stress 

When friction on mold side can not compensate the shear stress on flux solid/liquid 
interface, axial stress builds up in solid flux layer.
If the axial stress exceeds the flux fracture strength, solid flux breaks and moves 
along the mold wall.

When friction on mold side can not compensate the shear stress on flux solid/liquid 
interface, axial stress builds up in solid flux layer.
If the axial stress exceeds the flux fracture strength, solid flux breaks and moves 
along the mold wall.
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Review: Critical Consumption Rate 

Crystalline mold flux: lower consumption causes fracture near meniscus

Critical consumption rate: 0.28kg/m2 for 1.0m/min casting speed

Crystalline mold flux: lower consumption causes fracture near meniscus

Critical consumption rate: 0.28kg/m2 for 1.0m/min casting speed
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Review: Critical Consumption Rate 

Glassy mold flux: lower consumption causes fracture near mold exit

Critical consumption rate: 0.35kg/m2 for 1.0m/min casting speed

Glassy mold flux: lower consumption causes fracture near mold exit

Critical consumption rate: 0.35kg/m2 for 1.0m/min casting speed
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Objectives

What will happen if the flux fractures?
Solid flux layer moves down the mold

What is the solid flux velocity?
liquid fills the gap between the top attached part and 
bottom moving part

What is the gap size? Can liquid fill in the gap?
solid flux re-attaches to mold wall

Will it break again? Where and when?
liquid flux runs out

Will flux move with the steel shell?

What will happen if the flux fractures?
Solid flux layer moves down the mold

What is the solid flux velocity?
liquid fills the gap between the top attached part and 
bottom moving part

What is the gap size? Can liquid fill in the gap?
solid flux re-attaches to mold wall

Will it break again? Where and when?
liquid flux runs out

Will flux move with the steel shell?
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Phenomena Description

mold and solid flux rim move 
upward

liquid flux channel gap at 
meniscus increases

pressure in the channel gap 
decreases

liquid flux fills in the channel gap

liquid layer thickness below 
meniscus decreases

flux consumption to meniscus 
region occurs

mold and solid flux rim move 
upward

liquid flux channel gap at 
meniscus increases

pressure in the channel gap 
decreases

liquid flux fills in the channel gap

liquid layer thickness below 
meniscus decreases

flux consumption to meniscus 
region occurs
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Phenomena Description
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mold and solid flux rim move 
downward

liquid flux channel gap at 
meniscus decreases

pressure in the channel gap 
increases

liquid flux is squeezed out of the 
channel gap

liquid layer thickness below 
meniscus increases

flux consumption to lower shell 
region occurs

mold and solid flux rim move 
downward

liquid flux channel gap at 
meniscus decreases

pressure in the channel gap 
increases

liquid flux is squeezed out of the 
channel gap

liquid layer thickness below 
meniscus increases

flux consumption to lower shell 
region occurs
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Fracture Model Description
Fracture happens at the maximum up-stroke due to axial tensile stress
After fracture, solid flux moves down the mold wall, with a velocity that 
depends on force balance between the two sides:

Fracture happens at the maximum up-stroke due to axial tensile stress
After fracture, solid flux moves down the mold wall, with a velocity that 
depends on force balance between the two sides:

Mold/solid flux interface:Mold/solid flux interface:

/mold solid flux moving steel gzτ φ ρ= ⋅

Solid/liquid flux interface:Solid/liquid flux interface:

( )( ) ( )
( ) ( )

/

1 1
2

s l

c s
s flux steel l

l

n V V n
gd

d n

τ

µ ρ ρ

=

+ − +
+ −

+

τm/s=τs/l Vs can be calculatedτm/s=τs/l Vs can be calculated
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Fracture Model Description
Gap occurs when solid flux layer fractures, gap size:

Part of liquid flux is consumed to fill in the gap:

where q is consumption rate (m2/s)

Gap occurs when solid flux layer fractures, gap size:

Part of liquid flux is consumed to fill in the gap:

where q is consumption rate (m2/s)

( )
_

_
= −∫

t reattach

solid moldt fractcture
L V V dt

_total fill in liquid oscq q q q= + +

_
solid c

fill in
mold

L d Vq
Z

× ×
=

0

liquidd

liquid liquidq V dx= ∫
,liquid solidd d


⇒


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Sample Cases

Case 1: dliquid=constant, never fractures
Case 2: dliquid fluctuates from meniscus to 100mm below 

meniscus, fractures once
Case 3: dliquid fluctuates from meniscus to 150mm below 

meniscus, frequently fractures near meniscus 
and mold exit, liquid flux nearly runs out at mold 
exit

Case 4: dliquid fluctuates from meniscus to 200mm below 
meniscus, more frequently fractures near 
meniscus, also fractures at the bottom of mold, 
liquid flux runs out before mold exit

Case 1: dliquid=constant, never fractures
Case 2: dliquid fluctuates from meniscus to 100mm below 

meniscus, fractures once
Case 3: dliquid fluctuates from meniscus to 150mm below 

meniscus, frequently fractures near meniscus 
and mold exit, liquid flux nearly runs out at mold 
exit

Case 4: dliquid fluctuates from meniscus to 200mm below 
meniscus, more frequently fractures near 
meniscus, also fractures at the bottom of mold, 
liquid flux runs out before mold exit
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Example Application: Input Conditions
Casting Speed: 1.0 m/min
Pour Temperature: 1550 oC
Slab Geometry: 1500*230 mm2

Nozzle Submergence depth: 265 mm
Working Mold Length: 800 mm
Time Step: dt=0.002 s
Mesh Size: dx=0.5 mm
Fraction Solid for Shell Thickness location: 0.3 
Carbon Content: 0.05 %
Mold Powder Solidification Temperature: 950 oC
Mold Powder Conductivity (solid/liquid): 1.5/1.5 W/mK
Mold Powder Density: 2500 kg/m3

Mold Powder Viscosity at 1300 oC: 4.2 poise
Exponent for temperature dependency of viscosity: 1.6 -
Fracture strength (tensile/compress): 80/8000 KPa
Mold Powder Consumption Rate: 0.45 kg/m2 

Mold/flux coefficient (static/moving): 0.4/0.4 -
Oscillation Mark Geometry (depth*width): 0.45*4.5 mm2

Mold Oscillation Frequency: 83.3 cpm
Oscillation Stroke: 7.8 mm
Mold Thickness (including water channel): 51 mm
Initial Cooling Water Temperature: 30 oC
Water Channel Geometry (depth*width*distance): 25*5*29 mm3

Cooling Water Flow rate: 7.8 m/s

Casting Speed: 1.0 m/min
Pour Temperature: 1550 oC
Slab Geometry: 1500*230 mm2

Nozzle Submergence depth: 265 mm
Working Mold Length: 800 mm
Time Step: dt=0.002 s
Mesh Size: dx=0.5 mm
Fraction Solid for Shell Thickness location: 0.3 
Carbon Content: 0.05 %
Mold Powder Solidification Temperature: 950 oC
Mold Powder Conductivity (solid/liquid): 1.5/1.5 W/mK
Mold Powder Density: 2500 kg/m3

Mold Powder Viscosity at 1300 oC: 4.2 poise
Exponent for temperature dependency of viscosity: 1.6 -
Fracture strength (tensile/compress): 80/8000 KPa
Mold Powder Consumption Rate: 0.45 kg/m2 

Mold/flux coefficient (static/moving): 0.4/0.4 -
Oscillation Mark Geometry (depth*width): 0.45*4.5 mm2

Mold Oscillation Frequency: 83.3 cpm
Oscillation Stroke: 7.8 mm
Mold Thickness (including water channel): 51 mm
Initial Cooling Water Temperature: 30 oC
Water Channel Geometry (depth*width*distance): 25*5*29 mm3

Cooling Water Flow rate: 7.8 m/s
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Liquid Flux Layer Thickness: Case 1& 2
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Assume bi-linear liquid flux layer amplitude variation with time/distance

(average and frequency are calculated)

Assume bi-linear liquid flux layer amplitude variation with time/distance

(average and frequency are calculated)
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University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab   • Ya Meng        22

Liquid Layer Thickness & Shear Stress 
During Oscillation Cycle: Case 1 &2
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Axial Stress in Solid Flux Layer
Case 1 & 2
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Liquid Flux Layer Thickness: 4 Cases
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Axial Stress in Solid Flux Layer: 4 Cases
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Flux Layer Thickness: 4 Cases
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Solid Flux Layer Dwell Time in Mold
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Fracture(s) are assumed to occur once per mold residence timeFracture(s) are assumed to occur once per mold residence time
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Heat Flux Comparison
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Assume solid layer is squeezed to fill in gaps after liquid flux runs out:

resulting thinner layer produces a local heat flux increase.

Assume solid layer is squeezed to fill in gaps after liquid flux runs out:

resulting thinner layer produces a local heat flux increase.
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Mold Temperature Comparison
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Shell Temperature Comparison
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Shell Thickness Comparison
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Results

kg/ton

kg/ton

kg/ton

mm

kPa

MW/m2

unit

0.0930.1510.3090.324Liquid layer consumption

0.2780.1730.0150.0Solid layer consumption

0.286

0.07

7.79

1.367

Case 3

0.286

0.32

0.66

1.202

Case 2

0.2390.286Osc. marks consumption

0.00.35dliquid at mold exit

18.320.56Friction amplitude

1.4561.189Heat Flux

Case 4Case 1
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Solid Flux Consumption Mechanism

When friction on mold side can not compensate the shear 
stress on flux solid/liquid interface, axial stress builds up in
solid flux layer. If the axial stress exceeds the flux fracture 
strength, solid flux breaks and moves along the mold wall.
After fracture the solid flux moves down the mold wall, the 
velocity is calculated according to force balance. 
When mold velocity equals to solid flux’s, the solid flux re-
attaches to the mold wall.
The above procedure may repeat, when accumulated axial 
stress exceeds the fracture strength.
When solid flux layer fractures, part of liquid flux fills in the 
gap due to the fracture, which decreases liquid flux layer 
thickness.

When friction on mold side can not compensate the shear 
stress on flux solid/liquid interface, axial stress builds up in
solid flux layer. If the axial stress exceeds the flux fracture 
strength, solid flux breaks and moves along the mold wall.
After fracture the solid flux moves down the mold wall, the 
velocity is calculated according to force balance. 
When mold velocity equals to solid flux’s, the solid flux re-
attaches to the mold wall.
The above procedure may repeat, when accumulated axial 
stress exceeds the fracture strength.
When solid flux layer fractures, part of liquid flux fills in the 
gap due to the fracture, which decreases liquid flux layer 
thickness.
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Conclusions
Solid flux consumption implies flux fracturing, which can be 
caused by drops in either consumption rate or liquid layer 
thickness.
Liquid layer thickness fluctuation at meniscus due to mold 
oscillation may cause solid flux layer to fracture. The fracture
frequency depends on liquid layer thickness fluctuation region and 
amplitude.
Fracture happens at the maximum up stroke and when liquid layer 
thickness is thin.
Gaps due to fracture near meniscus can be re-filled, while gaps 
due to fracture near mold exit might not due to liquid flux shortage.
When liquid flux nearly runs out, solid flux layer fractures 
frequently. It may lead to a heat flux peak, and corresponding 
mold temperature increase and shell temperature decrease (if 
solid flux can be squeezed).

Solid flux consumption implies flux fracturing, which can be 
caused by drops in either consumption rate or liquid layer 
thickness.
Liquid layer thickness fluctuation at meniscus due to mold 
oscillation may cause solid flux layer to fracture. The fracture
frequency depends on liquid layer thickness fluctuation region and 
amplitude.
Fracture happens at the maximum up stroke and when liquid layer 
thickness is thin.
Gaps due to fracture near meniscus can be re-filled, while gaps 
due to fracture near mold exit might not due to liquid flux shortage.
When liquid flux nearly runs out, solid flux layer fractures 
frequently. It may lead to a heat flux peak, and corresponding 
mold temperature increase and shell temperature decrease (if 
solid flux can be squeezed).
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Experiment: Flux Friction Coefficient
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Mold Powder: M622/G, µ1300=1.32Poise, Tcrystal=1180oC

Experiment Procedure:

1. powder melt in crucible at 1400oC, poured into sample holder

2. sample was in HTT, measure friction coefficient with increasing temperature

Mold Powder: M622/G, µ1300=1.32Poise, Tcrystal=1180oC

Experiment Procedure:

1. powder melt in crucible at 1400oC, poured into sample holder

2. sample was in HTT, measure friction coefficient with increasing temperature
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Experiment: Flux Friction Coefficient

Mold Powder: M622-C20, µ1300=2.0Poise, Tcrystal=1135oC

Experiment Procedure:

1. powder melt in crucible at 1400oC, poured into sample holder

2. sample was in HTT, measure friction coefficient with decreasing temperature

Mold Powder: M622-C20, µ1300=2.0Poise, Tcrystal=1135oC

Experiment Procedure:

1. powder melt in crucible at 1400oC, poured into sample holder

2. sample was in HTT, measure friction coefficient with decreasing temperature
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two 100rpm, others 50rpm
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Future Work

Hydro-dynamic model to predict pressure in liquid flux 
layer over a cycle, therefore, predict consumption rate 
and flux layer thickness change over a cycle.
Solid flux layer behavior when liquid flux runs out.
Measure flux viscosity and friction coefficient at low 
temperature using High Temperature Tribometer.
Calculate friction force due to mismatch taper using 
normal stress calculation from CON2D.

Hydro-dynamic model to predict pressure in liquid flux 
layer over a cycle, therefore, predict consumption rate 
and flux layer thickness change over a cycle.
Solid flux layer behavior when liquid flux runs out.
Measure flux viscosity and friction coefficient at low 
temperature using High Temperature Tribometer.
Calculate friction force due to mismatch taper using 
normal stress calculation from CON2D.


