

Transient Study of Turbulent Flow and Particle Transport in a Full-Scale Water Model and Continuous Steel Casting Machine Using LES

Quan Yuan

Department of Mechanical Engineering University of Illinois at Urbana-Champaign

October, 2002

- Professor B.G.Thomas & Professor S.P. Vanka
- Accumold
- AK Steel
- Columbus Stainless Steel
- Hatch Associates
- National Science Foundation
- National Center for Supercomputing Applications

Objectives

- Transient full-mold (two sides) simulation of turbulent flow in full-scale water models and steel slab casting machines
- Investigate turbulent flow in casting machines with taking care of tapering domain, solidification and downwards withdrawing of the shell
- Compare turbulent flow in water models and steel casting machines
- Develop a mathematical model for particle entrapment
- Investigate particle transport and entrapment in steel caster

0 0 1 1 tinuous Casting Consor Consortium

A Quick Review of Nozzle Simulation (LES)

Inlet Molten Steel V=0.0312m/s		Parameter	Value	
		Casting speed	25.4 mm/s (60inch/min)	
Stopper Rod	98mm	SEN top diameter	70mm	
		SEN side port width	32mm	
	≜	SEN side port height	77mm	
Tundish Bottom		SEN bottom port diameter	30mm	
Well Nozzle	325mm	SEN length	787mm	
		SEN nozzle angle	15°	
	<u> </u>	Well Nozzle Length	325mm	
Submerged Entry	Î	Stopper rod opening fraction	46 79/	
		(relative to well nozzle bore area)	40.170	
		Mold thickness	132mm	
		Mold width	984mm	
Nozzle (SEN)		Mold length	1,200 mm	
		Liquid steel density	7020 kg/m ³	
		Liquid steel molecular viscosity	0.0056 kg/ms	
	787mm	Port Angle – upper edge	15°	
		- bottom well edge	15°	
d_=30mn	V	elocities at nozzle ports ar	e stored every 0.025	
	S	econds for a period of 9.45	seconds: they are	
77mm		sed as transient inlet value	e to mold simulations	
<u>,</u> ~₩ ₩ ₩	<u> </u>			
Outflow (Pressure = 0	Constant) a	na recyclea perioalcally.		

University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Outflow (Pressure = Constant)

University or minors at orbana-Onampaign - Oumpatational ridid bynamics Labrinetais riduessing Simulation Lab • Quan Yuan

University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

A Quick Review of Nozzle Simulation (Comparison of u Velocity along Jet)

Comparison of u velocity (normal to port) along vertical centerline (Nozzle-Mold simulation results: B. Zhao, personal communication, 03/02) University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Comparison of w velocity (downwards velocity) along vertical centerline (Nozzle-Mold simulation results: B. Zhao, personal communication, 03/02) University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Large Eddy Simulation of Turbulent Fluid Flow in a Full-Scale Water Model and Steel Casting Machine

University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Properties and Conditions

Parameter/Property	Water Model	Casting Machine
Mold Width (mm)	984	984
Mold Thickness (mm)	132	132
Water Model Length (mm)	2600	-
Mold Length (mm)	-	1200
Domain Width (mm)	984	984 (top) 934.04 (domain bottom)
Domain Thickness (mm)	132	132 (top) 79.48 (domain bottom)
Domain Length (mm)	1200	2400
Nozzle Port Height × Thickness (mm×mm)	75×32	75×32
Bottom nozzle Port Diameter (mm)	32	32
SEN Submergence Depth (mm)	127	127
Casting Speed (mm/s)	25.4	25.4
Dynamic Viscosity of Liquid Steel (m²/s)	1.0×10^{6}	7.98×10^{-7}

- 3D transient Navior-Stokes Equations
- 2nd Order accuracy in space and time
- Non-Structured Cartesian collocation grid
- Algebraic Multi-Grid (AMG) solver is used to solve pressure Poisson Equation
- No sub-grid model (coarse grid DNS)
- 0.7 and 1.3 million computational cells for water model and casting machine simulations
- Mesh refinement is used for casting machine simulation
- 24-hour simulation on Pentium IV 1.7GHz 1GB PC generates 3s transient flow results in real(∆t=0.001s, 1.3 million cells)

Computational Mesh

Center planes of water model between Narrowfaces and Widefaces

Computational Mesh (ctd.)

Center planes of casting machine between Narrowfaces and Widefaces (Upper region)

Transient Flow in Casting Machine

Video Clip

Monitoring Point Locations

Time History of Top Surface Velocity onsortium

Time History of Top Surface Velocity (ctd.)

Horizontal Velocity towards SEN at top surface center points (full-scale water model)

Time History of Top Surface Velocity (ctd.)

Horizontal Velocity towards SEN at top surface center points (0.4-scale water model, half mold simulation for LES)

Top Surface Velocity Fluctuations

University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Full-scale water model, center plane (time-averaged over 48.5s)

Comparison with Measurements

University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Comparison of the downwards velocity (w) along the horizontal line 1m below top surface, 164mm from NF

1m below top surface, 164mm from NF University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Top Surface Velocity - rms

Observations

- CART3D is capable of simulating the transient flow phenomena during continuous casting
- Significant velocity fluctuations on top surface are most likely caused by the interaction of the flow in the two sides of the mold to SEN
- Downward velocity in the lower region (beneath jet impingment points) in steel casters may be more evenly distributed across the width than in water models
- Flow asymmetry is seen between two sides of the mold

Particle Transport and Entrapment in Continuous Slab Casting Machine

Inclusion Capture Mechanisms (review)

Previous studies focus on particle pushing/engulfment and

sometimes entrapment for quiescent solidifying problems, in which molten matrix has no bulk velocity to wash the particles away.

From: G. Wilde, J.H. Perepezko, Experimental Study of Particle Incorporation during Dendritic Solidification,

Materials Science & Engineering A283, 2000, p.25-37. University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Particle entrapment was reported easier than engulfment*.

*From: G. Wilde, J.H. Perepezko, Experimental Study of Particle Incorporation during Dendritic Solidification, Materials Science & Engineering A283, 2000, p.25-37.

Critical Velocities of Aluminum Particles in Molten Steel Consortium

0 0 1)tinuous astin

Casting

In continuous casting process, the solidifying front advancing speed is estimated to be \geq 200µm/s at the mold exit*, which is much bigger than the critical velocities of any nonnegligible particles.

*From: Quan Yuan, Report of Class ME497, Dept. of Mechanical Engr., Univ. of Illinois at Urbana-

Flow of molten steel

Criterion:

- for particles smaller than PDAS, they are modeled as being entrapped by solidifying fronts whenever they touches the fronts
- for particles bigger than PDAS, the logic is shown in the next page

For particles bigger than PDAS, the entrapment logic is:

Particle Transport Computation

Particle Group	Particle Diameter	Particle Density	Response Time
Index	(µm)	(Kg/m^3)	(µs)
1	10	2700	42.8
2	10	5000	79.3
3	40	2700	2.68
4	40	5000	4.96

Each group consists of ~10,000 particles

Remind: response time $\tau_p = \frac{\rho_p d_p^2}{18\mu_f}$ is a characteristic time after which a particle aquires 63% of flow velocity from rest.

Particle entrapment model (for $d_p \le 40 \mu m$): particles are modeled as entrapped by the solidifying front whenever they touch the front, for the PDAS_{min} is 47 μm (which is on NF close to top surface).

Variation of PDAS along Depth

From: B.G. Thomas, R. O'Malley and D. Stone, *Measurement of Temperature, Solidification, and Microstructure in a Continuous Cast Thin Slab*, TMS. Warrendale, PA, 1998, pp.1185-1199.

- Transient Lagarangian approach of particle transport
- 4th Order Runge-Kutta method for particle transport equation
- Drag, buoyancy, gravity and lift forces are included
- Particle transport is computed every time-step after computing fluid flow field
- Motions of ~ 40,000 particles are simulated in domain
- Variable time-steps (Δt) for different diameter /density particles (Δt_{min} =2.5x10⁻⁶ s for the smallest and lightest particles)

Particle Distributions at Three Instants

Four Typical Particle Trajectories

Trajectories up to 15s after

entering mold region

Statistics of Entrapped Particles

Statistics of Removed Particles

Particle Entrapment Locations

Atinuou

Casting

Conclusions

- CART3D is capable of predicting transient evolution of turbulent flow in continuous casting
- Two side interactions are an important cause of large top surface fluctuations, which affect entrainment of liquid flux
- Downward velocity in the lower region (beneath jet impingment points) in steel casters may be more evenly distributed across the width than in water models
- A particle entrapment model based on PDAS is proposed
- Asymmetry of particle transport and entrapment, being consistent with plant observations, is seen in LES simulations, which is found to be caused by inherent transient flow asymmetry in lower roll region
- No significant effect on transport/entrapment locations of particle size (10 & 40 micron) and density (2.7 & 5.0 s.g.)

- Finish the proposed particle entrapment model
- Compare model prediction with measurements
- Investigate transport and entrapment of large particles (inclusions, bubbles and liquid flux)
- Investigate the effect of the center nozzle port to stabilize flow in mold region