

LES Simulation of Transient Fluid Flow and Heat Transfer in Continuous Casting Mold

Bin Zhao

Department of Mechanical Engineering University of Illinois at Urbana-Champaign 10/2002

1

- Professor B.G.Thomas & Professor S.P. Vanka
- Accumold
- AK Steel
- Columbus Stainless Steel
- Hatch Associates
- National Science Foundation
- National Center for Supercomputing Applications

- LES flow and heat transfer simulations of an unconstrained impinging cylindrical jet.
- LES flow simulations had insufficient grid refinement near walls for heat transfer.
- High grid density needed near the impingement plate in order to get correct prediction of heat transfer rate without wall models.

Objectives

- Study transient fluid flow in continuous casting mold region: (eg. AK Steel thin slab mold).
- Study turbulent heat transfer in the casting mold liquid pool.

Simulation of Fluid Flow and Heat Transfer in the AK Steel Thin Slab Mold

¹/₄ mold simulation

- Solving 3D transient Navior-Stokes Equations
- Second Order accuracy in space and time
- Non-Structured Cartesian collocation grid
- Algebraic Multi-Grid (AMG) solver is used to solve pressure Poisson Equation
- No sub-grid model (Coarse Grid DNS)
- 3D flux-limited advection scheme
- 852,442 finite volume cells
- Time step 0.0005s

Boundary conditions

Simulation parameters

Casting speed	25.4 mm/s
Mold thickness	132 mm
Mold width	984 mm
Mold length	1,200 mm
Nozzle inlet diameter*	70 mm
SEN submerge depth	127 mm
Pouring temperature	1832 K
Solidifying temperature	1775 K
Steel density	7020 kg/m ³
Molecular viscosity	0.0056 kg/m·s
Heat conductivity	26 W/m·K
Prandtl number	0.1

* Nozzle geometry based on blueprints

Mesh for the nozzle part

Mesh for the mold part

Instantaneous velocity and temperature

Instantaneous velocity vs. dye injection experiment

Time-averaged fields

(averaged from 30s to 50s)

Time-averaged velocity vs. dye-injection experiment

Time-averaged heat flux on narrow face

Time-averaged heat flux on wide face

Temperature comparison (I)

Temperature comparison (II)

Temperature comparison (III)

Temperature comparison (IV)

Temperature comparison (V)

Observations

- NF heat flux may be a little lower than reality .
- Heat flux peak at NF impingement is 800 kw/m², instantaneously reaches 1,300 kw/m²; peak at small jet impingement point on WF is 500 kw/m², instantaneously reaches 700 kw/m².
- No upper roll in the flow field.
- Temperature in the upper corner region is too low.
- Jed diffuse a lot in the vertical direction, resulting in weak impingement and low NF heat flux.

Simulation of Fluid Flow and Heat Transfer in the AK Steel Thin Slab Mold

¹/₂ mold simulation

- Mesh: doubled (reflected) ¼ mold domain & mesh.
- 1,651,710 finite volume cells.
- Use the result of ¼ mold simulation as initial condition.
- Other parameters and conditions are identical to the ¼ mold simulation.

Instantaneous velocity and temperature

Instantaneous velocity field v.s. dye injection experiment

Temperature comparison (I)

Temperature comparison (II)

Temperature comparison (III)

Temperature comparison (IV)

Temperature comparison (V)

Instantaneous heat flux on narrow face

Observations

- The flow field now shows tendency towards an upper roll.
- The jet has less diffusion in the vertical direction compared to the ¹/₄ mold simulation: ie. has more penetration power.
- Applying WF-WF symmetry (cutting through a jet) is inappropriate for transient simulations.

Future Work

- Continue the ¹/₂ mold simulation.
- Add shell shape into the simulation.
- Investigate thermal buoyancy