

Modeling Interfacial Flux Layer Phenomena in the Shell/Mold Gap Using CON1D

Ya Meng

Department of Materials Science &. Engineering University of Illinois at Urbana-Champaign

March 10, 2002

- Pseudo-transient analytical model of heat flux and flow in interfacial flux layers.
- Mold friction depends on powder flux consumption rate and solid flux velocity
- Predicting mold flux critical consumption rate

Objectives

- What will happen if the flux fractures?
- > moving down from the mold
 - \rightarrow What is the solid flux velocity?
- > liquid filling the gap between the top attached part and bottom moving part
 - \rightarrow Gap size? If the liquid can fill in the gap?
- > solid flux re-attach to mold wall
 - \rightarrow If it will break again? Where and when?
- > liquid running out
 - \rightarrow If flux moves with steel shell?

Fracture Model Description

- Fracture happens at the maximum up-stroke due to axial tensile stress
- After fracture, solid flux moves down from mold wall, the velocity depends on force balance of two side:
- Mold/solid flux interface:

$$\tau_{mold \, / \, solid \, flux} = \phi_{moving} \cdot \rho_{steel} gz \qquad \phi_{moving}$$
, Moving friction coefficient

Solid/liquid flux interface:

$$\tau_{s/l} = \mu_{s} \frac{(n+1)(V_{c} - V_{s})}{d_{l}} + \frac{(n+1)}{(n+2)} \left(\rho_{flux} - \rho_{steel}\right) g d_{l}$$

So:
$$\tau_{s/l} = \tau_{m/s} \implies V_s$$
 can be calculated

Example Application: Input Conditions

 Casting Speed: Pour Temperature: Slab Geometry: Nozzle Submergence depth: Working Mold Length: 	1.0 1550 1500*230 265 800	m/min ∘C mm² mm mm
 Time Step: Mesh Size: Fraction Solid for Shell Thickness location: 	dt=0.001 dx=0.5 0.3	s mm
 Carbon Content: Mold Powder Solidification Temperature: Mold Powder Conductivity (solid/liquid): Mold Powder Density: Mold Powder Viscosity at 1300 °C: Exponent for temperature dependency of viscosity: Fracture strength (tensile/compress): Mold Powder Consumption Rate: Solid Flux Velocity: Mold/flux coefficient (static/moving): 	0.05 950 1.5/1.5 2500 4.2 1.6 80/8000 0.45 0.1 0.5/0.5	% °C W/mK kg/m ³ poise - KPa kg/m ² -
 Oscillation Mark Geometry (depth*width): Mold Oscillation Frequency: Oscillation Stroke: Mold Thickness (including water channel): Initial Cooling Water Temperature: 	0.45*4.5 83.3 7.8 51 30	mm² cpm mm mm ∘C
 Water Channel Geometry (depth*width*distance): Cooling Water Flow rate: University of Illinois at Urbana-Champaign • Metals Process 	25*5*29 7.8	mm ³ m/s

Gap after Fracture

Flux Layer Thickness

Example Application: Output Results

Casting Consortium Example Application	ion: Outp	ut Resi
Liquidus Temperature:Solidus Temperature:	1529 1509	°C °C
 Negative Strip Time: Positive Strip Time: Negative Strip Ratio of Velocity: Velocity Amplitude of Mold Oscillation: Pitch (spacing between oscillation marks): 	0.24 0.48 0.3 34.03 12	s s - mm/s mm
 Maximum Mold Hot Face Temperature: Maximum Mold Cold Face Temperature: Mold Cooling Water Temperature Increase: Mean Heat Flux in Mold: 	376.56 168.75 7.56 1.5715	°C °C °C MW/m²
 Basic Consumption Rate, CONS_{basic}: Shear Stress in Mold at Maximum Up-stroke: Shear Stress in Mold at Maximum Down-stroke: Calculated solid flux velocity ratio 	0.239 11.8032 -4.3052 0.24	kg/m² KPa KPa -
 Variables Calculated at Mold Exit: Shell Surface Temperature: Mold Hot Face Temperature: Shell Thickness: Liquid Flux Film Thickness: Solid Flux Film Thickness: Heat Flux: 	951.04 189.03 22.69 0.000 1.086 0.975	°C °C mm mm mm MW/m²

- First fracture happens at the maximum up stroke.
- After fracture the solid flux moving down from mold wall, the velocity is calculated according to force balance.
- When mold velocity equals to solid flux's, the solid flux reattaches to the mold wall.
- The above procedure may repeat, when accumulated axial stress exceeds the fracture strength.
- When liquid flux runs out, the solid flux layer moves with steel shell as casting speed.

- Improve model so output matches input consumption.
- Parametric study about static friction coefficient and moving friction coefficient between mold and solid flux.
- Measure flux viscosity and friction coefficient at low temperature using High Temperature Tribometer.
- Calculate friction force due to mismatch taper using normal stress calculation from CON2D.