

Study of Transient Fluid Flow in Continuous Casting of Steel Using LES Models

Quan Yuan

Department of Mechanical Engineering University of Illinois at Urbana-Champaign

October 18, 2001

Acknowledgements

- Professor B.G.Thomas Professor S.P. Vanka
- Accumold
- AK Steel
- Allegheny Ludlum Steel
- Columbus Stainless Steel
- LTV Steel
- Hatch Associates
- Stollberg, Inc
- National Science Foundation
- National Center for Supercomputing Applications

Objectives

- Develop realistic, efficient method for transient flow in continuous casting mold calculations
- Compare LES and K-ε in Fluent and in-house codes (LES3D and CART3D)
- Apply models to test problem (with measurements available, 0.4-scale LTV water model)
- Investigate effect of true nozzle inlet condition, side-to-side asymmetry and open bottom on transient flow in mold region
- Use best transient model to improve casting process (ultimate objective)

0.4-Scale LTV Water Model with PIV Measurement

Previous Work (0.4-scale LTV water model)

- Two-phase fluid flow in continuous casting nozzles using k-ε model (Hua Bai);
- Two-phase flow in molds using k-ε model (Tiebiao Shi)
- Simulation (using LES3D) of transient flow in 0.4 scale water model with inlet generated from
 - -i) a fully developed duct using LES (Sivaraj Sivaramakrishman)
 - -ii) a simplified nozzle simulation using LES (Q. Yuan)
- PIV measurements in nozzle and mold
- no side-to-side asymmetry
- mold inlet condition not precise

Dimensions and Conditions(0.4-scale LTV water model)

0.4-Scale LTV Nozzle Computation Domain

	iquid inlet:		
	normal liquid velocity=1.148m/s K=0.00763 m²/s²	Slide-gate orientation	90°
	ε=0.241m ⁻ /s [°] UTN(Upper Tundish Nozzle)	Slide-gate opening, linear fraction of the opening distance	52%
· · · · · · · · · · · · · · · · · · ·	•(•pp•: :	SEN bore diameter	32mm
R	Slide-Gate Opening	Port Height × Width	$32mm \times 31mm$
		Port thickness	11mm
	Shroud Holder	Port angle, lower edge	15° down
		Port angle, upper edge	40° down
		Bottom well recess depth	4.8mm
		Inlet volumetric flow rate through each port	7.09×10 ^{-₄} m³/s
	SEN(Submerged Engry Nozzle)	Casting speed (top thickness)	10.2mm/s (0.611m/min)
		Liquid density	1000 kg/m³́
6	(LTV 0.4-scale water model nozzle)	Liquid material dynamic viscosity Gas injection	0.001 Pa-s 0%
Ģ			

Nozzle ports pressure = constant zero normal gradient for velocities, K and ε .

Nozzle Simulation

- 3D steady time-averaged Navior-Stokes equations (186,519 cells)
- Standard K-ε turbulent viscosity model
- Fluent 5.5.14 (Finite Volume Method)
- Integrated using iterative solver (Algebraic Multi-Grid Method) for 4500 iterations (36 CPU hours on PIII 750MHz PC)
- Second order accuracy
- Residual $\leq 1.6 \times 10^{-6}$ (continuity)
- Converging strategy: under-relaxation factors are 0.2 (pressure), 0.4 (momentum) and 0.2(K and ϵ).

Comparison with PIV (along center line A-A', outer surface)

Atinuous Casting

Consortium

CFX: H Bai, "Argon Bubble Behavior in Slide-Gate Tundish Nozzles during Continuous Casting of Steel Slabs", Ph.D. Thesis, 2001, Univ. of Illinois at Urbana-Champaign.

Comparison with PIV (along B-B', 12mm from A-A', low velocity side)

CFX: H Bai, "Argon Bubble Behavior in Slide-Gate Tundish Nozzles during Continuous Casting of Steel Slabs", Ph.D. Thesis, 2001, Univ. of Illinois at Urbana-Champaign. University of Illinois at Urbana-Champaign • *Computational Fluid Dynamics Lab/Metals Processing Simulation Lab* • *Quan Yuan* 12

Ceneter plane Inner port surface University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan 13 Continuous Casting Consortium

Velocity at the nozzle port (inner surface) obtained from nozzle simulation employed as mold simulation inlet condition.

Mold Flow Simulations

- 3D transient Large Eddy Simulation (LES) with Smagorinsky model and standard steady K- ϵ model
- Both full mold (450,084 computation cells) and half mold (225,042 computation cells) domain
- 50 hours per flow second on a PIII 750MHz PC with 0.01s time step (full mold simulation)
- + Fluent 5.5.14 for K- $\epsilon\,$ and transient LES
- Residuals: $\leq 5 \times 10^{-4}$ (continuity, K- ϵ)

 $\leq 10^{-3} \times$ inlet mass flow rate (continuity, LES)

 Converging Strategy: under-relaxation factors are: pressure: 0.7(K- ε) and 0.3 (LES) momentum: 0.2 (K- ε) and 0.7 (LES) K and ε: 0.8

Governing Equations:

Continuity:

$$\frac{\partial v_i}{\partial x_i} = 0$$
Momentum:

$$\frac{Dv_i}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} v_{eff} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$$
where

$$v_{eff} = v_0 + 0.01 (\Delta x \Delta y \Delta z)^{2/3} \sqrt{\frac{\partial v_i}{\partial x_j} \frac{\partial v_i}{\partial x_j} + \frac{\partial v_i}{\partial x_j} \frac{\partial v_j}{\partial x_i}} \quad \text{for LES}$$

$$v_{eff} = \frac{\mu_{eff}}{\rho} = \frac{\mu_0 + \mu_i}{\rho} = \frac{\mu_0}{\rho} + C_\mu \frac{K}{\varepsilon} \quad \text{for K-} \varepsilon$$

tensor subscripts i and j mean x, y and z directions; repeated induces imply summation.

*S. Sivaramakrishnan, "Transient Fluid Flow in the Mold and Heat Transfer Through the Molten Slag layer in Continuous Casting Steel", M.S. Thesis, 2000, Univ. of Illinois at Urbana-Champaign.

Horizontal velocity along top surface centerline.

- K- ϵ model generates symmetrical flow pattern in mold region
- K- ϵ model is capable of capturing time-averaged flow field
- Transient K- ϵ model was not able to capture turbulent transient flow evolution in mold region, likely due to large dissipation.

Fluent LES and K- ε (half mold simulation, centerplane)

*S. Sivaramakrishnan, "Transient Fluid Flow in the Mold and Heat Transfer Through the Molten Slag layer in Continuous Casting Steel", M.S. Thesis, 2000, Univ. of Illinois at Urbana-Champaign.

Observations:

Obvious asymmetry between two sides were observed.

Horizontal velocity along top surface centerline.

Horizontal velocity along top surface centerline.

Constructions Construction Construction Construction Construction Construction Construction Construction

Vertical velocity along horizontal line 0.5 m below top surface at centerplane.

Where Does Jet First Impinges Wide Face?

From: "A Water Model Study of the Flow Asymmetry Inside a Continuous Slab Casting Mold", D. Gupta And A. K. Lahiri, Metallurgical and Materials Transactions B, Vol. 27B, Oct 1996, pp. 757-764.

Simulated Typical Motion of Swirl Along Jet: (LES)

Conclusions

- LES simulation is capable of capturing jet asymmetry associated with the nature of the turbulent flow in mold region
- LES results reasonable agree with PIV
- k-ε Model is capable of accurately capturing timeaveraged flow field
- Transient k-ε was not able to capture transient flow evolution in caster mold region
- Experiment found asymmetry exists in transient flow exiting nozzle, likely due to turbulence nature of nozzle flow, or asymmetry of nozzle geometry, which was not captured by traditional K- ϵ by nature.

Future Work

- Large Eddy Simulation of Transient Flow in Full Scale Steel Caster Nozzle and Mold Region (Open Bottom)
- Transient Inclusion Transport in Steel Caster Mold Region