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Objectives

� Develop realistic, efficient method for transient flow in 
continuous casting mold calculations

� Compare LES and K-ε in Fluent and in-house codes 
(LES3D and CART3D)

� Apply models to test problem (with measurements 
available, 0.4-scale LTV water model)

� Investigate effect of true nozzle inlet condition, side-to-side 
asymmetry and open bottom on transient flow in mold 
region

� Use best transient model to improve casting process 
(ultimate objective)
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0.4-Scale LTV Water Model 
with PIV Measurement
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Previous Work (0.4-scale LTV water model)

� Two-phase fluid flow in continuous casting nozzles 
using k-εεεε model (Hua Bai);

� Two-phase flow in molds using k-εεεε model ( Tiebiao Shi)
� Simulation (using LES3D) of transient flow in 0.4 scale 

water model with inlet generated from
-i) a fully developed duct using LES (Sivaraj
Sivaramakrishman)
-ii)  a simplified nozzle simulation using LES (Q. Yuan)

• PIV measurements in nozzle and mold

- no side-to-side asymmetry
- mold inlet condition not precise

� Two-phase fluid flow in continuous casting nozzles 
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Sivaramakrishman)
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• PIV measurements in nozzle and mold
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Dimensions and Conditions(0.4-scale LTV water model)
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Dimensions/Conditions Value 

Slide-gate orientation 90o 
Slide-gate opening, linear fraction 

(Area Fraction) 
52% 

(40%) 
SEN bore diameter 32mm 

SEN submergence depth 77 ± 3mm 
Port Height × Width 32mm × 31mm 

Port thickness 11mm 
Port angle, lower edge 15o down 
Port angle, upper edge 40o down 

Bottom well recess depth 4.8mm 
Water model height 950mm 
Water model width 735mm 

Water model thickness 80 mm ± 15 mm
Inlet volumetric flow rate through each port 3.53×10-4 m3/s 

Averaged inlet jet angle at port 30o 
Liquid density 1.0×103 kg/m3 

Liquid material  dynamic viscosity 0.001 Pa-s 
Gas injection 0% 
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Schematics of Computation Domain

y

z
x

y
• Nozzle simulation (Fluent: k-ε )

• Mold simulation

- Fluent: k-ε and LES:

half mold and both sides simulation 
with outlet holes at bottom 

- Fluent LES:
both sides simulation with open 
bottom

• Nozzle simulation (Fluent: k-ε )

• Mold simulation

- Fluent: k-ε and LES:

half mold and both sides simulation 
with outlet holes at bottom 

- Fluent LES:
both sides simulation with open 
bottom

�Zero shear surface�Zero shear surface

�Constant pressure�Constant pressure

�Solid wall except outlet being three holes; 

�P=constant for open bottom simulation.

�Solid wall except outlet being three holes; 

�P=constant for open bottom simulation.

�Solid walls�Solid walls
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0.4-Scale LTV Nozzle Computation Domain
X

Z

Y

Nozzle ports

UTN(Upper Tundish Nozzle)

Slide-Gate Opening

Shroud Holder

SEN( Submerged Engry Nozzle)

Liquid inlet:
normal liquid velocity=1.148m/s
K=0.00763 m2/s2

ε=0.241m2/s3

pressure = constant
zero normal gradient for
velocities, K and ε.

(LTV 0.4-scale water model nozzle)(LTV 0.4-scale water model nozzle)

Slide-gate orientation 90o 

Slide-gate opening, linear fraction ofthe 
opening distance 52% 

SEN bore diameter 32mm 
Port Height × Width 32mm × 31mm 

Port thickness 11mm 
Port angle, lower edge 15o down 
Port angle, upper edge 40o down 

Bottom well recess depth 4.8mm 
  

Inlet volumetric flow rate through each 
port 7.09×10-4 m3/s 

Casting speed (top thickness) 10.2mm/s 
(0.611m/min) 

Liquid density 1000 kg/m3 

Liquid material dynamic viscosity 0.001 Pa-s 

Gas injection 0% 
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Nozzle Simulation

• 3D steady time-averaged Navior-Stokes equations 
(186,519 cells)

• Standard K-ε turbulent viscosity model

• Fluent 5.5.14 (Finite Volume Method)

• Integrated using iterative solver  (Algebraic Multi-Grid 
Method) for 4500 iterations (36 CPU hours on PIII 750MHz 
PC)

• Second order accuracy

• Residual    1.6   10-6 (continuity)

• Converging strategy: under-relaxation factors are 0.2 
(pressure),  0.4 (momentum) and 0.2(K and ε).

• 3D steady time-averaged Navior-Stokes equations 
(186,519 cells)

• Standard K-ε turbulent viscosity model

• Fluent 5.5.14 (Finite Volume Method)

• Integrated using iterative solver  (Algebraic Multi-Grid 
Method) for 4500 iterations (36 CPU hours on PIII 750MHz 
PC)

• Second order accuracy

• Residual    1.6   10-6 (continuity)

• Converging strategy: under-relaxation factors are 0.2 
(pressure),  0.4 (momentum) and 0.2(K and ε).

≤ ×
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Velocity Field at Nozzle Port Outer SurfaceVelocity Field at Nozzle Port Outer Surface
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Fluid velocity, (Vx
2+Vz
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Comparison with PIV (along center line A-A’, outer surface)Comparison with PIV (along center line A-A’, outer surface)

CFX: H Bai, “Argon Bubble Behavior in Slide-Gate Tundish Nozzles during Continuous Casting of Steel Slabs”,
Ph.D. Thesis, 2001, Univ. of Illinois at Urbana-Champaign.
CFX: H Bai, “Argon Bubble Behavior in Slide-Gate Tundish Nozzles during Continuous Casting of Steel Slabs”,
Ph.D. Thesis, 2001, Univ. of Illinois at Urbana-Champaign.
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Fluid velocity, (Vx
2+Vz
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CFX: H Bai, “Argon Bubble Behavior in Slide-Gate Tundish Nozzles during Continuous Casting of Steel Slabs”,
Ph.D. Thesis, 2001, Univ. of Illinois at Urbana-Champaign.
CFX: H Bai, “Argon Bubble Behavior in Slide-Gate Tundish Nozzles during Continuous Casting of Steel Slabs”,
Ph.D. Thesis, 2001, Univ. of Illinois at Urbana-Champaign.

Comparison with PIV(along B-B’, 12mm from A-A’, low velocity side)Comparison with PIV(along B-B’, 12mm from A-A’, low velocity side)
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�Cross-stream Velocity field at the nozzle
port inner bore surface
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�Velocity field here were inputted as the 

inlet velocities for mold simulation.
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Schematics of Mold Flow Geometry

y

zx

y

Velocity at the nozzle port (inner
surface) obtained from nozzle
simulation employed as mold 
simulation inlet condition.

Velocity at the nozzle port (inner
surface) obtained from nozzle
simulation employed as mold 
simulation inlet condition.
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Mold Flow Simulations

• 3D transient Large Eddy Simulation (LES) with Smagorinsky model 
and standard steady K-ε model

• Both full mold (450,084 computation cells) and half mold (225,042 
computation cells) domain

• 50 hours per flow second on a PIII 750MHz PC with 0.01s time 
step (full mold simulation)

• Fluent 5.5.14 for K-ε and transient LES

• Residuals: (continuity,K- ε)

inlet mass flow rate (continuity, LES)

• Converging Strategy:   under-relaxation factors are:
pressure:     0.7(K- ε) and 0.3 (LES)
momentum: 0.2 (K- ε) and 0.7 (LES)
K and ε:       0.8

• 3D transient Large Eddy Simulation (LES) with Smagorinsky model 
and standard steady K-ε model

• Both full mold (450,084 computation cells) and half mold (225,042 
computation cells) domain

• 50 hours per flow second on a PIII 750MHz PC with 0.01s time 
step (full mold simulation)

• Fluent 5.5.14 for K-ε and transient LES

• Residuals: (continuity,K- ε)

inlet mass flow rate (continuity, LES)

• Converging Strategy:   under-relaxation factors are:
pressure:     0.7(K- ε) and 0.3 (LES)
momentum: 0.2 (K- ε) and 0.7 (LES)
K and ε:       0.8

310−≤ ×

45 10−≤ ×
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Governing Equations:

v 0i

ix
∂ =
∂Continuity:Continuity:

vv 1 v ji i
eff

i j j i

D p
Dt x x x x

ν
ρ

 ∂∂ ∂ ∂= − + +  ∂ ∂ ∂ ∂ 
Momentum:Momentum:

wherewhere
2 /3

0

vv v v0.01( ) ji i i
eff

j j j i

x y z
x x x x

ν ν
∂∂ ∂ ∂= + ∆ ∆ ∆ +

∂ ∂ ∂ ∂ for LESfor LES

0 0eff t
eff

KCµ

µ µ µ µν
ρ ρ ρ ε

+= = = + for K- εfor K- ε

tensor subscripts i and j mean x, y and z directions; repeated induces

imply summation.

tensor subscripts i and j mean x, y and z directions; repeated induces

imply summation.
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Jet angle
PIV: 29o

Simulation: 28o

Jet angle
PIV: 29o

Simulation: 28o

Fluent K- εεεε Comparison with PIV (both sides 0.4-scale water mFluent K- εεεε Comparison with PIV (both sides 0.4-scale water m
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Comparison with Experiment

*S. Sivaramakrishnan,  “Transient Fluid Flow in the Mold and Heat Transfer Through the Molten 
Slag layer in Continuous Casting Steel”, M.S. Thesis, 2000, Univ. of Illinois at Urbana-Champaign.
*S. Sivaramakrishnan,  “Transient Fluid Flow in the Mold and Heat Transfer Through the Molten 
Slag layer in Continuous Casting Steel”, M.S. Thesis, 2000, Univ. of Illinois at Urbana-Champaign.
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Comparison of Top Surface Velocity with PIV

Horizontal velocity along top surface centerline.Horizontal velocity along top surface centerline.
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Findings:

• K- ε model generates symmetrical flow pattern in mold region

• K- ε model is capable of capturing time-averaged flow field 

• Transient K- ε model was not able to capture turbulent transient 
flow evolution in mold region, likely due to large dissipation.

• K- ε model generates symmetrical flow pattern in mold region

• K- ε model is capable of capturing time-averaged flow field 

• Transient K- ε model was not able to capture turbulent transient 
flow evolution in mold region, likely due to large dissipation.
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Fluent LES and K- εεεε (half mold simulation, centerplane)Fluent LES and K- εεεε (half mold simulation, centerplane)
x

(m
)

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

0.2m/s:

(m/s)

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LES:
Staircase jet pattern 
observed

LES:
Staircase jet pattern 
observed

K- εεεεK- εεεε

Video Clip



University of Illinois at Urbana-Champaign  • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab  • Quan Yuan  22

Flow Asymmetry Observed in Experiment

*S. Sivaramakrishnan,  “Transient Fluid Flow in the Mold and Heat Transfer Through the Molten 
Slag layer in Continuous Casting Steel”, M.S. Thesis, 2000, Univ. of Illinois at Urbana-Champaign.
*S. Sivaramakrishnan,  “Transient Fluid Flow in the Mold and Heat Transfer Through the Molten 
Slag layer in Continuous Casting Steel”, M.S. Thesis, 2000, Univ. of Illinois at Urbana-Champaign.
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Fluent-LES ( both sides simulation with outlet holes)Fluent-LES ( both sides simulation with outlet holes)
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Fluent-LES (both sides simulation with open bottom)Fluent-LES (both sides simulation with open bottom)

Observations:
Obvious asymmetry between
two sides were observed.

Observations:
Obvious asymmetry between
two sides were observed.
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Comparison of Fluent LES, K- εεεε, PIV and LES3D

Horizontal velocity along top surface centerline.Horizontal velocity along top surface centerline.
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Open Bottom Effects On Top Surface VelocityOpen Bottom Effects On Top Surface Velocity

Horizontal velocity along top surface centerline.Horizontal velocity along top surface centerline.
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Fluent LES (holed outlets) 10.3s 

PIV:  ~ 30 min over a set of 
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Comparison of Fluent LES, K- εεεε, PIV and LES3DComparison of Fluent LES, K- εεεε, PIV and LES3D

Vertical velocity along horizontal line 0.5 m below top surface at centerplane.Vertical velocity along horizontal line 0.5 m below top surface at centerplane.
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Open Bottom Effects On Middle RegionOpen Bottom Effects On Middle Region
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Vertical velocity along horizontal line 0.5 m below top surface at centerplane.Vertical velocity along horizontal line 0.5 m below top surface at centerplane.
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Where Does Jet First Impinges Wide Face?Where Does Jet First Impinges Wide Face?

From: “A Water Model Study of the Flow Asymmetry Inside a Continuous Slab Casting Mold”, D. Gupta 
And  A. K. Lahiri, Metallurgical and Materials Transactions B, Vol. 27B, Oct 1996, pp. 757-764.
From: “A Water Model Study of the Flow Asymmetry Inside a Continuous Slab Casting Mold”, D. Gupta 
And  A. K. Lahiri, Metallurgical and Materials Transactions B, Vol. 27B, Oct 1996, pp. 757-764.
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Simulated Jet Impinging Wide Faces
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Simulated Typical Motion of Swirl Along Jet: (LES)Simulated Typical Motion of Swirl Along Jet: (LES)
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Conclusions

� LES simulation is capable of capturing jet asymmetry 
associated with the nature of the turbulent flow in mold 
region

� LES results reasonable agree with PIV
� k-ε Model is capable of accurately capturing time-

averaged flow field
� Transient k-ε was not able to capture transient flow 

evolution in caster mold region
� Experiment found asymmetry exists in transient flow 

exiting nozzle, likely due to turbulence nature of nozzle 
flow, or asymmetry of nozzle geometry, which was not 
captured by traditional K- ε by nature.
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Future Work

• Large Eddy Simulation of Transient Flow in Full 
Scale Steel Caster Nozzle and Mold Region 
(Open Bottom)

� Transient Inclusion Transport in Steel Caster 
Mold Region
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