# Effect of Argon Gas Distribution on Fluid Flow in the Mold Using Time-Averaged k- $\varepsilon$ Models

## B. G. Thomas, T. Shi and L. Zhang

Department of Materials Science &. Engineering University of Illinois at Urbana-Champaign

October 18, 2001

## Acknowledgements

The authors would like to thank:

- Accmold
- AK Steel
- Allegheny Ludlum Steel
- Columbus Stainless Steel
- LTV Steel
- Hatch Associates
- Stollberg, Inc.
- National Science Foundation
- National Center for the Supercomputing Applications (NCSA)
- Continuous Casting Consortium (CCC) at UIUC

## Objectives

- Develop multiphase model to simulate the 3-D flow pattern of molten steel in the continuous casting mold with multisize-argon gas injection
- Validate model using water model & steel caster comparisons
- Estimate flow pattern (single roll, double roll, etc.) and gas penetration (contours) obtained in steel caster as a function of casting conditions (gas flow rate, gas volume fraction, argon bubble size, steel throughput, mold width, and SEN submergence depth)
- Recommend practices related to argon gas injection optimization to improve the flow pattern in continuous casting mold

## Contents

- 1. Model Development
- 2. Model Validation
- 3. Parametric Study for the Steel Caster
  - Steel throughput
  - Gas volume fraction (gas flow rate)
  - Bubble size and its distribution
  - Slab width
  - SEN submergence depth



#### **Bubble Size Distribution in Nozzle** (Bai's Double-needle Water Model Experiment)



#### Liquid Velocity in the Nozzle (Case A)



#### Liquid Velocity in the Nozzle (Case B)



## Data Transfer from Nozzle Simulation Output to Mold Simulation Input



#### Bubble Size Distribution in Mold (0.4 Scale LTV Water Model)



#### **Steel Flow Pattern with Distributed Bubble Size (Case A)**



#### **Steel Flow Pattern with Distributed Bubble Size (Case B)**



## **Model Validation**

|               | Case A                      | Case B                 |
|---------------|-----------------------------|------------------------|
| Casting Speed | 55 inch/min                 | 35 inch/min            |
| Gas Flow Rate | 13 SLPM                     | 6.3 SLPM               |
| Quality       | More pencil<br>pipe defects | More sliver<br>defects |

### **Parameters for Fluid Flow Calculation in Water Model**

|                                                                         | Α                     | В                      |  |
|-------------------------------------------------------------------------|-----------------------|------------------------|--|
| Cases                                                                   | (55ipm+11%hot<br>gas) | (35ipm+8.5%hot<br>gas) |  |
| Mold Width W(mm) $	imes$ Thickness H(mm)                                | 730×80                |                        |  |
| Mold Height (mm)                                                        | 950                   |                        |  |
| Nozzle Submergence Depth (mm)<br>(Top surface to top of port of SEN)    | 80                    |                        |  |
| Nozzle Inner Diameter                                                   | 31                    |                        |  |
| Nozzle Port Width (mm) × Height (mm)                                    | 31 ×31                |                        |  |
| Jet Angle                                                               | 30º down              |                        |  |
| Inlet Jet Spread Angle                                                  | 0°                    |                        |  |
| Water Flow Rate Q <sub>w</sub> <i>(SLPM)</i>                            | 58.59 (15.5GPM)       | 37.80(10.0GPM)         |  |
| Equivalent Steel Casting Speed (ipm)                                    | 54.03                 | 34.86                  |  |
| Gas Flow Rate (SLPM, hot volume)                                        | 7.43 (15.8SCFH)       | 3.71(7.9SCFH)          |  |
| Gas Volume Fraction (%)                                                 | 11.3                  | 8.9                    |  |
| Inlet Velocity, V <sub>x</sub> <i>(m/s)</i>                             | 0.571                 | 0.358                  |  |
| Inlet Velocity, V <sub>z</sub> (m/s)                                    | 0.33                  | 0.207                  |  |
| Inlet Turbulent Kinetic Energy, <i>k<sub>o</sub> (m²/s²)</i>            | 0.044                 |                        |  |
| Inlet Turbulent Turbulent dissipation rate , $arepsilon_o~(m^2/ m s^3)$ | 0.999                 |                        |  |

### **Parameters for Fluid Flow Calculation in Water Model (Cont.)**

| Cases                                 | A<br>(55ipm+11%hot gas) | B<br>(35ipm+8.5%hot<br>gas) |  |  |
|---------------------------------------|-------------------------|-----------------------------|--|--|
| Water Density (kg/m <sup>3</sup> )    | 1000                    |                             |  |  |
| Water Viscosity (kg/m³)               | 1×10 <sup>-3</sup>      |                             |  |  |
| Gas Density ( <i>kg/m³</i> )          | 1.20                    |                             |  |  |
| Gas Viscosity ( <i>kg/m³</i> )        | 1.7×10 <sup>-5</sup>    |                             |  |  |
| Average Bubble Diameter (mm)          | 2.59                    | 2.43                        |  |  |
| Volume Fraction of 0.5 mm Bubble (%)  | 1.07                    | 4.43                        |  |  |
| Volume Fraction of 1.5 mm Bubble (%)  | 4.53                    | 4.90                        |  |  |
| Volume Fraction of 2.5 mm Bubble (%)  | 31.15                   | 10.34                       |  |  |
| Volume Fraction of 3.5 mm Bubble (%)  | 55.83                   | 8.73                        |  |  |
| Volume Fraction of 4.5 mm Bubble (%)  | 7.42                    | 11.60                       |  |  |
| Volume Fraction of 5.5 mm Bubble (%)  | 0                       | 12.71                       |  |  |
| Volume Fraction of 6.5 mm Bubble (%)  | 0                       | 0                           |  |  |
| Volume Fraction of 7.5 mm Bubble (%)  | 0                       | 0                           |  |  |
| Volume Fraction of 8.5 mm Bubble (%)  | 0                       | 0                           |  |  |
| Volume Fraction of 9.5 mm Bubble (%)  | 0                       | 21.83                       |  |  |
| Volume Fraction of 10.5 mm Bubble (%) | 0                       | 26.46                       |  |  |
| Breakup Coefficient                   | 0.5                     | 0.1                         |  |  |
| Coalescence Coefficient               | 0                       | 0                           |  |  |

#### Velocity at Centerplane (Case A: 55ipm+13SLPM/11% hot gas)



#### Velocity at Centerplane (Case B: 35ipm+6.5SLPM/8.5% hot gas)





#### **Parameters for the Real Caster Modeling**

|                                   | Cast A          | Case B             |
|-----------------------------------|-----------------|--------------------|
|                                   | (13SLPM, 55ipm) | (6.3SLPM, 3.5 ipm) |
| Nozzle Submergence Depth (mm)     | 165             | 165                |
| Vertical Velocity in Nozzle (m/s) | 2.05            | 1.31               |
| Casting Speed (mm/s)              | 23.2            | 14.8               |
| Inlet Steel Flow Rate (m3/min)    | 0.584           | 0.376              |
| Throughput (tonne/min)            | 4.10            | 2.64               |
| Inlet Gas Flow Rate (SLPM)        | 13              | 6.3                |
| Inlet Gas Volume Fraction (%)     | 11              | 8.5                |
| Average Gas Bubble Diameter (mm)  | 2.59            | 2.43               |

### **Differences between Steel Caster and Water Model**

- 1. Increasing the dimensions by a factor of 2.5 to simulate the full-scale geometry;
- Increasing the inlet velocity by a factor of (2.5)<sup>1/2</sup> (to simulate the actual casting speed rather than the velocities in the water model, which were scaled down according to the standard modified Froude criterion);
- 3. Replacing the domain bottom with a pressure boundary condition;
- 4. Changing the bubble distribution
- 5. Changing the liquid properties
- 6. Nozzle geometry slight change and simulated with 3D model

#### Fluid Flow in Steel Caster (Case A)



#### Fluid Flow in Steel Caster (Case B)



#### **MFC Measurement of Flow Pattern in Steel Caster**



Normally double roll.

Almost Case B: Mostly double roll but experiencing some flow pattern switching.

M. B. Assar, P. H. Dauby and G. D. Lawson. Opening then black box: PIV and MFC measurements in a continuous caster mold. 83<sup>rd</sup> Steelmaking Conference Proceedings, P397-411

### **Comparison between Water Model and Steel Caster**

| Case A                                    |             |                                       |                                                                       |  |  |  |  |  |  |
|-------------------------------------------|-------------|---------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| Water mo                                  | del         | Steel Caster                          |                                                                       |  |  |  |  |  |  |
| PIV measurement                           | Single roll | MFC<br>measurement                    | Normally double roll                                                  |  |  |  |  |  |  |
| <i>k-</i> $\varepsilon$ calculation (CFX) | Single roll | <i>k-ε</i> calculation (CFX)          | Computer flow closer<br>to double roll than a<br>single roll          |  |  |  |  |  |  |
| Case B                                    |             |                                       |                                                                       |  |  |  |  |  |  |
| Water mo                                  | del         | Steel Caster                          |                                                                       |  |  |  |  |  |  |
| PIV measurement                           | Single roll | MFC<br>measurement                    | Mostly double roll but<br>experiencing some<br>flow pattern switching |  |  |  |  |  |  |
| $k$ - $\varepsilon$ calculation (CFX)     | Single roll | $k$ - $\varepsilon$ calculation (CFX) | Slight double roll flow                                               |  |  |  |  |  |  |

## **Parametric Study**

#### **Effects of**

- Steel throughput
- Gas volume fraction (gas flow rate)
- Bubble size and its distribution
- Slab width
- SEN submergence depth

**Results of** 

- Flow pattern
- Gas Penetration

### **Steel Caster Modeling Cases**

| Case Steel Flow rate |                                                     | Slab                                   | Casting speed                          |                 | Gas volume             | Gas                  | Bubbles              |         | Flow     |         |
|----------------------|-----------------------------------------------------|----------------------------------------|----------------------------------------|-----------------|------------------------|----------------------|----------------------|---------|----------|---------|
| No.                  | tonne/ ton/min width (m) Steel dens<br>min 7020kg/m | Steel density<br>7020kg/m <sup>3</sup> | Steel density<br>7700kg/m <sup>3</sup> | fraction<br>(%) | flow<br>rate<br>(SLPM) | Mean<br>size<br>(mm) | Size<br>distribution | pattern |          |         |
| 1                    | 1.65                                                | 1.815                                  | 1.016                                  | 0.0169m/s       | 0.0154m/s              | 33                   | 20.9                 |         |          | Single  |
| 2                    | 1.65                                                | 1.815                                  | 1.016                                  | (40 ipm)        | (36.4ipm)              | 27                   | 15.7                 |         |          | Single  |
| 3                    | 1.65                                                | 1.815                                  | 1.016                                  |                 |                        | 23                   | 12.7                 |         |          | Double  |
| 4                    | 1.65                                                | 1.815                                  | 1.016                                  |                 |                        | 21                   | 11.3                 |         |          | Double  |
| 5                    | 1.65                                                | 1.815                                  | 1.016                                  |                 |                        | 19                   | 9.9                  |         |          | Double  |
| 6                    | 2.14                                                | 2.354                                  | 1.321                                  |                 |                        | 25                   | 18.3                 |         |          | Single  |
| 7                    | 2.14                                                | 2.354                                  | 1.321                                  |                 |                        | 18.6                 | 12.6                 |         |          | Double  |
| 8                    | 2.14                                                | 2.354                                  | 1.321                                  |                 |                        | 17                   | 11.3                 |         |          | Double  |
| 9                    | 2.6                                                 | 2.86                                   | 1.6                                    |                 |                        | 17                   | 13.7                 |         |          | Complex |
| 10                   | 2.6                                                 | 2.86                                   | 1.6                                    |                 |                        | 15                   | 11.8                 |         |          | Complex |
| 11                   | 2.6                                                 | 2.86                                   | 1.6                                    |                 |                        | 9                    | 6.6                  |         |          | Double  |
| 12                   | 2.64                                                | 2.906                                  | 1.854                                  | 0.0148m/s       | 0.0134m/s              | 16.4                 | 13.3                 | 2.43    | Bi modal | Single  |
| 13                   | 2.64                                                | 2.906                                  | 1.854                                  | (35ipm)         | (31.8ipm)              | 8.5                  | 6.3                  | 2.43    | Bi modal | Double  |
| 14                   | 2.64                                                | 2.906                                  | 1.854                                  |                 |                        | 11                   | 8.4                  | 2.43    | Bi modal | Double  |
| 15                   | 2.64                                                | 2.906                                  | 1.854                                  |                 |                        | 6.77                 | 4.9                  | 2.43    | Bi modal | Double  |

### **Steel Caster Modeling Cases (Cont.)**

| Case Steel Flow rate |               | low rate | Slab      | Casting speed                          |                                        | Gas volume      | Gas                    | Bubbles              |                           | Flow pattern |
|----------------------|---------------|----------|-----------|----------------------------------------|----------------------------------------|-----------------|------------------------|----------------------|---------------------------|--------------|
| No. tor<br>mi        | tonne/<br>min | ton/min  | width (m) | Steel density<br>7020kg/m <sup>3</sup> | Steel density<br>7700kg/m <sup>3</sup> | fraction<br>(%) | flow<br>rate<br>(SLPM) | Mean<br>size<br>(mm) | Size<br>distri<br>-bution |              |
| 16                   | 4.1           | 4.51     | 1.854     | 0.023m/s                               | 0.021m/s                               | 18              | 23.1                   |                      |                           | Single       |
| 17                   | 4.1           | 4.51     | 1.854     | (55ipm)                                | (50ipm)                                | 16              | 20.0                   |                      |                           | Single       |
| 18                   | 4.1           | 4.51     | 1.854     |                                        |                                        | 11              | 13.0                   | 2.59                 | normal                    | Complex      |
| 19                   | 4.1           | 4.51     | 1.854     |                                        |                                        | 11              | 13.0                   | 2.59                 | normal                    | Sin/com      |
| 20                   | 4.1           | 4.51     | 1.854     |                                        |                                        | 5.7             | 6.4                    | 2.59                 | normal                    | Complex      |
| 22                   | 4.1           | 4.51     | 1.854     |                                        |                                        | 3.7             | 4.0                    | 2.59                 | normal                    | Double       |
| 21                   | 2.64          | 2.91     | 1.854     | 0.0148m/s                              | 0.0134m/s                              | 11.0            | 8.4                    | 2.59                 | normal                    | Single       |
| 23                   | 2.64          | 2.91     | 1.854     | (35ipm)                                | (35ipm) (31.8ipm)                      | 5.7             | 4.0                    | 2.59                 | normal                    | Single       |
| 24                   | 2.64          | 2.91     | 1.854     |                                        |                                        | 8.6             | 6.3                    | 2.59                 | normal                    | Single       |
| 25                   | 2.64          | 2.91     | 1.854     |                                        |                                        | 3.7             | 2.6                    | 2.59                 | normal                    | Complex      |
| 26                   | 3.0           | 3.30     | 1.854     | 0.0168m/s                              | 0.0153                                 | 4.9             | 4.0                    | 2.59                 | normal                    | Sin/com      |
| 27                   | 3.0           | 3.30     | 1.854     | (40ipm)                                | (36.4ipm)                              | 7.8             | 6.5                    | 2.59                 | normal                    | Single       |
| 30                   | 3.0           | 3.30     | 1.854     |                                        |                                        | 2.7             | 2.1                    | 2.59                 | normal                    | Com/sin      |
| 28                   | 2.64          | 2.91     | 1.854     | 0.0148m/s                              | 0.0134m/s                              | 1.9             | 1.3                    | 2.59                 | normal                    | Complex      |
| 29                   | 2.64          | 2.91     | 1.854     | (35ipm)                                | (31.8ipm)                              | 1.2             | 0.8                    | 2.59                 | normal                    | Com/dou      |



#### **Effect of Steel Throughput on Flow Pattern**





#### **Effect of Steel Throughput on Flow Pattern Conditions: Conditions:** 1.854 m slab 1.854 m slab 23.3mm/s 14.8mm/s (**2.64tonne/min**) 2.6 SLPM (4.1tonne/min) 4 SLPM 3.7% Gas 3.7% Gas 2.59mm bubble(normal) 2.59mm bubble(normal) 0.1% 10e-3% 10e-5% 0.1% 0e-3% 10e-5% Single roll IIIIIII Double ro 1111 111111111 11111111111111111 111111111111111 1111111111111111 Case25 Case22

### **Conclusion:**

- For the same flow pattern, either single roll (case21, 23 and 24) or complex flow pattern (case29, 28 and 25) or double roll (case13 and 14), increasing gas volume fraction makes a deeper gas penetration.
- 2. When this causes the flow pattern to change then there is no clear effect of gas volume fraction on gas penetration depth (case 18, 20 and 22).
- 3. Double roll generally appears to have less penetration than single roll











**Effect of Gas Volume Fraction on Flow Pattern (Low Throughput)** 



**Effect of Gas Volume Fraction on Flow Pattern (High Throughput)** 



### Effect of Gas Volume Fraction on Flow Pattern (Bi Modal Bubble Distribution)



#### **Effect of Gas Volume Fraction on Flow Pattern**



Flow Pattern Identification (Water Model) (Modified from M. Assar, P. Dauby and G. Lawson)



## Flow Pattern Identification (Real Caster) — Gas (Hot) Volume Fraction and Steel Throughput



#### Flow Pattern Identification (Real Caster) — Effect of Gas Flow Rate (Approx.)



#### Effect of Bubble Size Distribution on Flow Pattern

**Conclusion:** 

With other conditions same, the bi modal bubble distribution tends to double roll and the normal distribution tends to single roll.



**Effect of Bubble Size Distribution on Flow Pattern** 

**Effect of Bubble Size Distribution on Flow Pattern** 



**Effect of Bubble Size on Flow Pattern** 





**Factors Affecting Gas Penetration** 





#### **Best Case with the Lowest Gas Penetration Depth**

Case13

Case23

#### **Effect of Slab Width on Flow Pattern**



<u>Conclusion</u>: Keeping casting speed and gas fraction constant, decreasing slab width is likely to have a double roll flow pattern in caster, with accompanying better stability and less gas penetration and defects.

### **Effect of SEN Submergence Depth on Flow Pattern**



### Flow Pattern Identification (Real Caster) — Effect of SEN Submergence Depth



#### **Computed Velocity at Centerplane with Different SEN Submergence**



#### **Computed Velocity at Centerplane with Different SEN Submergence**





## Conclusions

- 1. Computational simulation and measurements show that the flow pattern in the steel caster is sometimes very different from that in a scale water model and the steady, multiphase k- $\varepsilon$  computation can match both. The main reason for this difference is the reduced scale of water model combined with the Froude-based velocity scaling criterion used to choose the water model flow rates.
- 2. Flow pattern changes during continuous casting, leads to surface contour changes and accompanying level fluctuations and defects, so should be avoided
- 3. Gas flow rate, casting speed, gas volume fraction, mold width, SEN submergence depth all change the fluid flow pattern. Optimal argon injection depends on all of these factors.
- 4. Lower steel throughput generates less gas penetration and tends to more single roll.

## Conclusions

5. For the same flow pattern, increasing gas volume fraction causes deeper gas penetration. Double roll flow pattern generally has less penetration than single roll. When flow pattern changes, the effect of gas volume fraction on is unclear.

6. Decreasing gas volume fraction tends to change the flow pattern from single roll to complex flow pattern and then to double roll.

7. With other conditions constant, the bi modal bubble distribution tends to double roll and the normal bubble distribution tends to single roll.

8. The least gas penetration depth is found with double roll flow pattern and lower steel throughput.

9. For a given gas fraction and steel throughput, increasing submergence depth tends to generate double roll.

## **Further Work**

- 1. Validate and extend the current findings.
- 2. Improve the multiphase fluid flow model with multiple size bubbles. Quantitatively Investigate the function of bubble breakup and coalescence on the fluid flow and compared with measurements.
- 3. Quantify the conditions which lead to defects such as pencil pipes and then quantify the flow patterns which lead to safe conditions through subsequent parametric studies by the developed mathematical models.
- 4. Further study on gas flow behavior in the industrial nozzle.