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Phenomena

Evolution
Mechanisms:

Processes
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Evolution Mechnisms Related to Particle Size

log time

Independent of fluid flow Dependent on fluid flow in Ladles, Tundish and Mold
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Steel Cleanliness ⇔ Inclusions in Steel Steel Cleanliness ⇔ Inclusions in Steel 
Size
Shape
Size
Shape

l Direct Measurement of Inclusions:

Ù Metallographical microscope observation 

(two dimensional slices)

Ù Slime (time consuming)

Ù Others (Cone machining, laser, electrical, ultrasonic, sulfur print)

l Indirect Methods

Ù Total Oxygen (T.O.) measurement

Ù Nitrogen Pickup

Ù Dissolved Al loss for LCAK Steel

Ù Analysis of slag composition evolution

l Direct Measurement of Inclusions:

Ù Metallographical microscope observation 

(two dimensional slices)

Ù Slime (time consuming)

Ù Others (Cone machining, laser, electrical, ultrasonic, sulfur print)

l Indirect Methods

Ù Total Oxygen (T.O.) measurement

Ù Nitrogen Pickup

Ù Dissolved Al loss for LCAK Steel

Ù Analysis of slag composition evolution

Evaluation Methods of Steel CleanlinessEvaluation Methods of Steel Cleanliness

w Sampling difficulties

w Time consuming

w Sampling difficulties

w Time consuming
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Inclusions in Tunidsh Steel Samples Showing 
Liquid Slag

Inclusions in Tunidsh Steel Samples Showing 
Liquid Slag

Steel grade: LCAK Steel
Source: Slime test Residual
Typical composition: Al2O3 24%, SiO2 29%, MnO 20%, FeO 16%

CaO 4%, MgO 1.4%, others 4.6%

Steel grade: LCAK Steel
Source: Slime test Residual
Typical composition: Al2O3 24%, SiO2 29%, MnO 20%, FeO 16%

CaO 4%, MgO 1.4%, others 4.6%
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Steel grade: LCAK Steel
Source: Slime test Residual
Typical composition: Al2O3 96.2%, SiO2 2.3%, MnO 1.3%, FeO 0.2%

Steel grade: LCAK Steel
Source: Slime test Residual
Typical composition: Al2O3 96.2%, SiO2 2.3%, MnO 1.3%, FeO 0.2%

Alumina Inclusions in Continuous Casting SlabAlumina Inclusions in Continuous Casting Slab
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Alumina Clusters in Carbon Steel[1]Alumina Clusters in Carbon Steel[1]

[1] R.Rastogi and A. W. Cramb. Inclusions Formation and 
Agglomeration in Aluminum Killed Steels. 84th Steelmaking Conference 
Proceedings, ISS, Warrendale, PA, USA, P789-829

[1] R.Rastogi and A. W. Cramb. Inclusions Formation and 
Agglomeration in Aluminum Killed Steels. 84th Steelmaking Conference 
Proceedings, ISS, Warrendale, PA, USA, P789-829
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Example of Total Oxygen, Al loss, Nitrogen PickupExample of Total Oxygen, Al loss, Nitrogen Pickup

[1] Bonila C. et al. 78th Steelmaking Conference Proceedings, Vol.78, 1995, p629-635
[2] Chakraborty S. et al. 77th Steelmaking Conference Proceedings, Vol.77, 1994, p389-395
[3] Ahlborg K. V. et al. 76th Steelmaking Conference Proceedings, Vol.76, 1993, p469-473
[4] Melville S. D. et al. 78th Steelmaking Conference Proceedings, Vol.78, 1995, p563-569

[1] Bonila C. et al. 78th Steelmaking Conference Proceedings, Vol.78, 1995, p629-635
[2] Chakraborty S. et al. 77th Steelmaking Conference Proceedings, Vol.77, 1994, p389-395
[3] Ahlborg K. V. et al. 76th Steelmaking Conference Proceedings, Vol.76, 1993, p469-473
[4] Melville S. D. et al. 78th Steelmaking Conference Proceedings, Vol.78, 1995, p563-569
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Al2O3 Inclusion Absorption to Mold FluxAl2O3 Inclusion Absorption to Mold Flux
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Inclusion Phenomena in Continuous Casting MoldInclusion Phenomena in Continuous Casting Mold

Inclusion Sources:
=Carrying in through nozzle
Ù Deoxidation Products
Ù Nozzle clog
Ù Entrainment of tundish/ladle slag (reoxidation by SiO2, FeO, MnO in slag)

=Entrainment of mold slag by excessive top surface level fluctuation 
=Reoxidation by air absorption from nozzle leaks

=Argon bubbles 

=Precipitation of inclusion in low superheat, such as TiO2

Inclusion Removal:
= Buoyancy rising 
= Fluid flow transport
= Attachment to bubble surface and fast rising (Bubble flotation)
= Inclusion growth by collision and Ostwald-Ripening
= Absorption from steel to slag at interface

Inclusion Destination:
= Top slag layer (safe removal)
= Trapped in solidification shell (defect)

Inclusion Sources:
=Carrying in through nozzle
Ù Deoxidation Products
Ù Nozzle clog
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= Inclusion growth by collision and Ostwald-Ripening
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= Top slag layer (safe removal)
= Trapped in solidification shell (defect)
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All inclusions phenomena in mold are greatly 
affected by bulk fluid flow pattern, thus it is 
important to study the fluid flow in mold.

All inclusions phenomena in mold are greatly 
affected by bulk fluid flow pattern, thus it is 
important to study the fluid flow in mold.

Conclusion Conclusion 
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1. Large Eddy Simulation (LES)
Ù Random Walk Model for Particle Motion

2. Reynolds Stress Model (RSM)
Ù Random Walk Model for Particle Motion

3. k-ε Model for Fluid Flow
Ù Random Walk Model for Particle Motion 
Ù Streamline Model for Particle Motion 

4. k-ε Model for Top Surface Pressure and Level Fluctuation

1. Large Eddy Simulation (LES)
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Ù Random Walk Model for Particle Motion

3. k-ε Model for Fluid Flow
Ù Random Walk Model for Particle Motion 
Ù Streamline Model for Particle Motion 

4. k-ε Model for Top Surface Pressure and Level Fluctuation

Cases of Fluid Flow and Inclusion Motion 
Simulation in the Current Report

Cases of Fluid Flow and Inclusion Motion 
Simulation in the Current Report

Water Model:Water Model:

Steel Caster:Steel Caster:

1. k-ε Model for Fluid Flow

Ù Four Cases for Inclusion Motion by Random Walk Model 

1. k-ε Model for Fluid Flow

Ù Four Cases for Inclusion Motion by Random Walk Model 
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Fluid Flow and Particle 
Behavior in 1:1 Water Model

Fluid Flow and Particle 
Behavior in 1:1 Water Model
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Sketch of 1:1 Water Model (a) and Simulation Domain (b)[1]Sketch of 1:1 Water Model (a) and Simulation Domain (b)[1]

[1] Yuan, Q., S.P. Vanka, and B.G. Thomas. Large Eddy Simulatios of Turbulence Flow and Inclusions 
Transport in Continuous Casting of Steel. Turbulence and Shear Flow Phenomena Second International 
Symposium, June 27-29. 2001: KTH, Stockholm

[1] Yuan, Q., S.P. Vanka, and B.G. Thomas. Large Eddy Simulatios of Turbulence Flow and Inclusions 
Transport in Continuous Casting of Steel. Turbulence and Shear Flow Phenomena Second International 
Symposium, June 27-29. 2001: KTH, Stockholm
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300Corresponding alumina inclusion diameter in steel caster (µm)

LES pipe simulation results[1]Inlet condition

988Particle density (kg/m3)

3.8 2-3Particle size (diameter) (mm)

1.0 ×10-6Fluid kinetic viscosity (m2/s)

1000Fluid density (kg/m3)

0.0152Casting speed (m/s)

0.00344Average inlet flow rate (m3/s)

0.238Mold/Domain thickness (m)
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25oInlet jet angle

25oNozzle angle

0.051×0.056Nozzle port size/ Inlet port size (x×y) (m)

SimulationExperiment

Experimental and Simulation ParametersExperimental and Simulation Parameters

[1] Yuan, Q., S.P. Vanka, and B.G. Thomas. Large Eddy Simulatios of Turbulence Flow and Inclusions 
Transport in Continuous Casting of Steel. Turbulence and Shear Flow Phenomena Second International 
Symposium, June 27-29. 2001: KTH, Stockholm

[1] Yuan, Q., S.P. Vanka, and B.G. Thomas. Large Eddy Simulatios of Turbulence Flow and Inclusions 
Transport in Continuous Casting of Steel. Turbulence and Shear Flow Phenomena Second International 
Symposium, June 27-29. 2001: KTH, Stockholm
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Mesh for k-ε and RSM Water Model SimulationsMesh for k-ε and RSM Water Model Simulations
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Non-Uniform Inlet Condition (LES Skewed Pipe Flow Simulation)[1]Non-Uniform Inlet Condition (LES Skewed Pipe Flow Simulation)[1]
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up,i , the particle velocity at i direction;
xp,i , the particle position at i direction; 
µ is the fluids viscosity; 
ρp , ρ , the particle density and fluid density respectively; 
Rep,, the particle Reynolds number;
CD , the drag force coefficient; 

g, is the gravitational acceleration; 
aother,i , the other forces’ acceleration, which is ignored in the present study.

up,i , the particle velocity at i direction;
xp,i , the particle position at i direction; 
µ is the fluids viscosity; 
ρp , ρ , the particle density and fluid density respectively; 
Rep,, the particle Reynolds number;
CD , the drag force coefficient; 

g, is the gravitational acceleration; 
aother,i , the other forces’ acceleration, which is ignored in the present study.
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Boundary condition for particles:

Escape from top surface and outlet, reflect from other faces 
(no entrapment to solidified shell)

Boundary condition for particles:

Escape from top surface and outlet, reflect from other faces 
(no entrapment to solidified shell)



University of Illinois at Urbana-Champaign   • Metals Processing Simulation Lab   • Lifeng Zhang (2001)

Model: The particle interacts with fluid phase turbulent eddies over the eddy 
lifetime. When the eddy lifetime is reached, a new value of the fluids 
instantaneous velocity is obtained by applying a new value of random number ξ . 

Each eddy is characterized by:
• a Gaussian distributed random velocity fluctuation u’, v’, w’ , keeping constant 
over the characteristic lifetime of the eddies 
• a lifetime scale, τe

Instantaneous fluid velocity: 

Model: The particle interacts with fluid phase turbulent eddies over the eddy 
lifetime. When the eddy lifetime is reached, a new value of the fluids 
instantaneous velocity is obtained by applying a new value of random number ξ . 

Each eddy is characterized by:
• a Gaussian distributed random velocity fluctuation u’, v’, w’ , keeping constant 
over the characteristic lifetime of the eddies 
• a lifetime scale, τe

Instantaneous fluid velocity: 

Random Walk ModelRandom Walk Model

: the mean fluid phase velocity
ξ : normally distributed random number.

The expression of τe:

CL =0.15.

: the mean fluid phase velocity
ξ : normally distributed random number.

The expression of τe:

CL =0.15.

uuu ′+=

32model -kfor 2 kuu ξξ ε  →←′=′

u

ετ kCLe 2=
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Effect of Turbulence Fluctuations on Particle Movement
(Fluid Flow Simulation is by k-ε Turbulence Model)

Effect of Turbulence Fluctuations on Particle Movement
(Fluid Flow Simulation is by k-ε Turbulence Model)

uuu ′+=

Random Walk Model (Stochastic Model) :  Random Walk Model (Stochastic Model) :  

uu =

Streamline Model (Non-Stochastic Model) :  Streamline Model (Non-Stochastic Model) :  

u : The instantaneous fluid velocity    
: the mean fluid phase velocity

u’ : random velocity fluctuation

u : The instantaneous fluid velocity    
: the mean fluid phase velocity

u’ : random velocity fluctuation
u
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Time step is 0.1s, and at 
every time step, 938 
particles are injected into 
mold through the 938 
random positions on SEN 
port (as right figure). Total 
injection time is 1.6s, thus 
15008 inclusions are 
injected into the domain.

Time step is 0.1s, and at 
every time step, 938 
particles are injected into 
mold through the 938 
random positions on SEN 
port (as right figure). Total 
injection time is 1.6s, thus 
15008 inclusions are 
injected into the domain.
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Particle Velocities DistributionParticle Velocities Distribution

t=1.6s t=1.6s Streamline ModelStreamline Model
Random Walk ModelRandom Walk Model
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t=100s t=100s Streamline ModelStreamline Model
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Particle velocities 
(Streamline Model, 100s)
Particle velocities 
(Streamline Model, 100s)

Particle velocities (Random 
Walk Model, 100s)
Particle velocities (Random 
Walk Model, 100s)

Compare of Particle Velocities and Fluids Flow VelocitiesCompare of Particle Velocities and Fluids Flow Velocities
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Particle Escape Fraction Particle Escape Fraction 
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Conclusions:

Random walk model is better than streamline model to predict the
inclusions motion in mold because considering the effect of 
turbulence fluctuation. (In 100s, Random walk model: 37% removal; 
Streamline model: 65%; Experiments: 50% )

Conclusions:

Random walk model is better than streamline model to predict the
inclusions motion in mold because considering the effect of 
turbulence fluctuation. (In 100s, Random walk model: 37% removal; 
Streamline model: 65%; Experiments: 50% )
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Comparison between Different Turbulence ModelsComparison between Different Turbulence Models

1. Large Eddy Simulation (LES)

2. Reynolds Stress Model (RSM)

3. k-ε Two Equation Model

1. Large Eddy Simulation (LES)

2. Reynolds Stress Model (RSM)

3. k-ε Two Equation Model

Non-uniform inlet conditionNon-uniform inlet condition

Uniform inlet conditionUniform inlet condition

1. k-ε Two Equation Model1. k-ε Two Equation Model
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Comparison between Uniform Inlet and Non-Uniform Inlet (k-ε Model)Comparison between Uniform Inlet and Non-Uniform Inlet (k-ε Model)

scale: 0.5m/s scale: 0.5m/s

Uniform inlet
Vx=1.191594 m/s
Vy=-0.5512596 m/s
Vz=-0.001 m/s
k=0.0832 m2/s2

ε=1.057863 m2/s3

Uniform inlet
Vx=1.191594 m/s
Vy=-0.5512596 m/s
Vz=-0.001 m/s
k=0.0832 m2/s2

ε=1.057863 m2/s3

Non-uniform inlet
From LES Simulation
Non-uniform inlet
From LES Simulation
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Comparison between Different Turbulence Models 
(Non-Uniform Inlet Condition)

Comparison between Different Turbulence Models 
(Non-Uniform Inlet Condition)

scale: 0.5m/s scale: 0.5m/s scale: 0.5m/s

K-εK-ε RSMRSM LESLES
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Speed along Four Vertical Lines by Different Turbulence 
Models and Measurement

Speed along Four Vertical Lines by Different Turbulence 
Models and Measurement
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Conclusion: 
Uniform inlet k-ε underpredicts velocity peaks.
Conclusion: 
Uniform inlet k-ε underpredicts velocity peaks.
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Enlargement of the Speed the line of 460mm from SEN on 
the central wide section 

Enlargement of the Speed the line of 460mm from SEN on 
the central wide section 
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Conclusion:
RSM model has slightly better prediction on the position of 
the peak for the line 460mm from SEN on the central wide 
section.

Conclusion:
RSM model has slightly better prediction on the position of 
the peak for the line 460mm from SEN on the central wide 
section.
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Particle Distribution by k-ε and LESParticle Distribution by k-ε and LES
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Particle Escape Fraction Particle Escape Fraction 

Conclusion:
Ù RSM model has a best prediction of particle removal

fraction compared to the experiments results. 
Ù LES model overpredicts particle removal fraction 

and k-ε far underpredicts particle removal fraction.

Conclusion:
Ù RSM model has a best prediction of particle removal

fraction compared to the experiments results. 
Ù LES model overpredicts particle removal fraction 

and k-ε far underpredicts particle removal fraction.
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Computation Time Consuming Computation Time Consuming 

Ù To reach a residual of 10- 6 as convergence 

criterion, the computation time are as follows:

l RSM: 43 hours

l k-ε: 11 hours

Ù To reach a residual of 10- 6 as convergence 

criterion, the computation time are as follows:

l RSM: 43 hours

l k-ε: 11 hours

Ù LES: more than 20 daysÙ LES: more than 20 days
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Fluid Flow and Inclusion  
Behavior in Steel Caster 

(Random Walk k-ε)

Fluid Flow and Inclusion  
Behavior in Steel Caster 

(Random Walk k-ε)
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Escape from top surface and open 
bottom, reflect from other faces

Boundary condition for inclusions

Random walk modelInclusion motion model

k-εTurbulence model

LES pipe simulation resultsInlet condition

2700Particle density (kg/m3)

300, 100, 50, 25Particle size (diameter) (µm)

0.954 ×10-6Fluid kinetic viscosity (m2/s)

7020Fluid density (kg/m3)

0.0152Casting speed (m/s)

0.00344Average inlet flow rate (m3/s)

0.238Mold/Domain thickness (m)

1.83Mold/Domain width (m)

4Mold/Domain height (m)

0.150Submergence depth (m)

25oInlet jet angle

25oNozzle angle

0.051×0.056Nozzle port size/ Inlet port size (x×y) (m)

Simulation

Experimental and Simulation ParametersExperimental and Simulation Parameters
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Escape Fraction for Different Size Inclusions Escape Fraction for Different Size Inclusions 

Conclusions:
l With increasing size, inclusion removal to the top 
surface becomes easier. 
l Smaller inclusions are much easily transported 
by the flow out of the bottom. 

Conclusions:
l With increasing size, inclusion removal to the top 
surface becomes easier. 
l Smaller inclusions are much easily transported 
by the flow out of the bottom. 
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300µm Inclusion Distribution with Time Increasing300µm Inclusion Distribution with Time Increasing
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Conclusion from simulation:

Inclusion amount at the center 
of mold is less than that at 
other places.

Conclusion from simulation:

Inclusion amount at the center 
of mold is less than that at 
other places.
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Proof from industrial experimentsProof from industrial experiments
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Removal of 300µm Inclusions with Time IncreasingRemoval of 300µm Inclusions with Time Increasing

Conclusions
Ù Inclusions require about 10min to leave the domain of mold region (4m). 
Ù The total removal fraction to top surface is 63%, escape fraction to open 
bottom is 37%.
Ù In 10 min, the casting length is 8.24m, but the domain is 4m. So if ignoring 
the inclusions entrapment to solidified shell, the steel in the domain will 
become dirty more and more with time increasing
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bottom is 37%.
Ù In 10 min, the casting length is 8.24m, but the domain is 4m. So if ignoring 
the inclusions entrapment to solidified shell, the steel in the domain will 
become dirty more and more with time increasing
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Conclusions:
Ù After t=270s, inclusions removal to top surface becomes less than 0.5%. 

Ù At t=270s, the cast length is 4.1m, which is similar with domain length.
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Effect of Inclusion Entrapment to Solidified ShellEffect of Inclusion Entrapment to Solidified Shell

l Non-Entrapment Model: previous simulations 
assume that if inclusions collide with solidified shell, 
they will be reflected.

l Entrapment Model: if inclusions collide with 
solidified shell, they will be entrapped.
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Non-Entrapment model: Top surface: 60%, flow away from 
bottom: 12%, remain in domain: 28% (Total escape in 100s: 72%)
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bottom: 12%, remain in domain: 28% (Total escape in 100s: 72%)
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The Accuracy of the Similarity 
Criterion of Stokes Velocity for 
the Particle Motion in Water 
and in Liquid Steel 
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The Accuracy of the Similarity of the Particle Motion 
between Water and Liquid Steel  Stokes Velocity

The Accuracy of the Similarity of the Particle Motion 
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Comparison Between Liquid Steel and Water Model Comparison Between Liquid Steel and Water Model 
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Comparison Between Liquid Steel and Water Model Comparison Between Liquid Steel and Water Model 
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Pressure on the Top Surface 
and Level Fluctuation of Mold
Pressure on the Top Surface 
and Level Fluctuation of Mold
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Experimental and Simulation Parameters[1]Experimental and Simulation Parameters[1]

[1]  J. Anagnostopoulos and G. Bergeles. Metall. Mater. Trans. B., Vol.30B, 1999, p1095-1105[1]  J. Anagnostopoulos and G. Bergeles. Metall. Mater. Trans. B., Vol.30B, 1999, p1095-1105
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Mesh and Velocity Distribution Mesh and Velocity Distribution 
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Mold Surface Level Calculated from Pressure at Center Line 
along Width direction on Top Surface
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Turbulence Energy Distribution at Top SurfaceTurbulence Energy Distribution at Top Surface
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Level Fluctuation Calculated from Turbulence Energy  at 
Center Line along Width direction on Top Surface
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Velocity, Pressure, Turbulent Energy at Top Surface for the 
Former Liquid Steel System

Velocity, Pressure, Turbulent Energy at Top Surface for the 
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Calculated Surface Level and Its Fluctuation for the Liquid 
Steel System

Calculated Surface Level and Its Fluctuation for the Liquid 
Steel System
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Velocity, Turbulence 
Energy and Its Dissipation 
Rate for a Full-Developed 

Pipe Flow

Velocity, Turbulence 
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1. For the fluid flow calculation in a full scale water model, uniform inlet k-ε
underpredicts velocity peaks. With non-uniform inlet condition, all of k-ε
, RSM and LES turbulence models have good agreement with experiment 
measurement. However, RSM model has slightly better prediction at 
some places, and k-ε model takes least time consuming.

2. For the particle motion, random walk model is better than streamline 
model because considering the effect of turbulence fluctuation. 

3. It is concluded that  entrapment of inclusions to walls has very strong 
effect to inclusion removal. The suitable entrapment model needs further 
development.   

4. For the particle motion in full scale water model, RSM model has a best 
prediction of particle removal fraction compared to the experimental 
results. LES model overpredicts and  k-ε far underpredicts. 
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5. From the calculation of inclusion removal in steel caster (k-ε , random 
walk and without consideration of entrapment to walls), with increasing 
size, inclusion removal to the top surface becomes easier. Inclusions 
require about 10min to leave the domain of mold region (4m), and the 
total removal fraction to top surface is 63%, escape fraction to open 
bottom is 37%.  After t=270s, inclusions removal to top surface becomes 
less than 0.5%. 

6. The difference of particle removal fraction in water and liquid steel 
shows that the Stokes rising velocity is not a reasonable criterion for 
matching the particle behavior in water with inclusion behavior in liquid 
steel.

7. The top surface level and its fluctuation can be approximately estimated 
from the calculated  pressure distribution for the flat top surface.

8. The developed models for the velocity and turbulence energy distribution 
for a full-developed pipe flow agree well with LES and DNS simulation.
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Further Investigations

1 The transient fluid flow simulation for the steel caster 
mold.

2 The suitable entrapment model of inclusion to the 
solidified shell. 

3 The inclusions collision and coagulation simulation and 
its contribution to inclusion size growth and removal. 

4 The interaction between inclusions and bubbles and its 
contribution to inclusion motion (removal) from mold. 

1 The transient fluid flow simulation for the steel caster 
mold.

2 The suitable entrapment model of inclusion to the 
solidified shell. 

3 The inclusions collision and coagulation simulation and 
its contribution to inclusion size growth and removal. 

4 The interaction between inclusions and bubbles and its 
contribution to inclusion motion (removal) from mold. 


