

CCC Report October 18, 2001

Billet Casting Thermal Stress Modeling

Joong-kil Park, Posco Steel Brian G. Thomas, Ya Meng, UIUC IV Samarasekera, UBC

Objectives

1. Model Validation

2. Effect of corner radius on cracks

Instrumented Billet Mold

Thermocouples on mold tube

Finite Element Thermal-Stress Model

Thermocouples on mold tube

Heat Transfer across the Mold / Shell Interface

Heat Transfer across the Mold / Shell Interface

Interface heat transfer coefficient variation with air gap size

Casting Conditions Modeled

Billet Size	120mm sq.		Mold Material	DHP-Cu
casting speed	2.2 m/min.		Mould length	800mm
Meniscus level	100mm		Thickness	6mm
Oscillation type	Sinusoidal	-	Construction / Lubrication	Tube / oil
Stroke length	8mm		Taper (linear)	0.785%/m
SEN	Open pour		Corner radius	4mm
Machine radius	8m		Cooling water	1100 l/min.
Steel grade	0.04%C		Cooling water velocity	9.2m/sec.

Model Mold distortion and taper

Mold wall profile (including taper and thermal distortion)

Model heat flux

Model Calibration

Comparison of predicted and measured mold temperatures (CON1D)

Surface temperature along billet centerline

Model Validation

Comparison of predicted and measured shell thickness (based on FeS injection)

Comparison of Predicted and Measured Shell Growth

Billet section (Sulfur print)

4-mm Corner Radius

Shell Solidification in the Mold Corner

Shell Solidification in the Mold Corner

Surface temperature profiles at different times

Shell Growth in the mold: Effect of corner radius

4-mm Corner Radius

15-mm corner radius

Air gap profiles calculated (variation with time and position)

0 0 1 tinuous astiny

Comparison of 4-mm and 15-mm corner radius

Stress Model Results

Stress Profile through shell thickness (compared with corresponding temperature profile at mold exit)

Shell shrinkage and bulging profile

Profile of centerline and corner showing shrinkage in mold and bulging just below, comparing 4 and 15-mm corner radius

Off-corner Cracks: Caused by Strain from Bulging Below Mold

0 3tinuous astin

Casting

pnsortium

Off-corner Cracks: Worse with large corner radius

0 3tinuous astin

Casting

nsortium

100mm below mould exit

15-mm corner radius

Off-corner Cracks: Casting Consortium Worse with large corner radius

15-mm corner radius

Mould exit

100mm below mould exit

Comparison of principal stress contours in corner region