

CCC Report October 18, 2001

Thermal Stress Analysis of Bulging with Roll Misalignment for Various Slab Cooling Patterns

Kuan-Ju Lin, China Steel Brian G. Thomas, UIUC

Quality Concerns for Heavy Plate

- Main defects in plate inspection
 - Low T/2 toughness
 - UT defects
 (correlated with centerline POROSITY)
- Low toughness is aggravated by
 - Bulging
 - Segregation
- Strong cooling may lessen shell bulging

Slab center porosity: cause of UT defects in heavy plate

Roll gaps (machine taper) profile

(used at China Steel for slab soft reduction)

Model Validation: China Steel

- In-slab thermocouple measurement
- Surface temperature measurement with optical pyrometers
- Heat extraction from support rolls from measuring machine water temperature increase

CON1D treatment of Spray Zone

$$h_{rad} = \sigma \cdot \varepsilon_{steeel} \cdot (T_s + T_{amb}) \cdot (T_s^2 + T_{amb}^2)$$

$$h_{conv} = Max(8.7, 12.4 \cdot Q_W)$$

$$h_{spray} = Coeff \cdot A \cdot Q_w^n \cdot (1 - b \cdot T_{amb})$$

$$h_{roll} = \frac{(h_{rad} + h_{conv} + h_{spray}) \cdot L_{spray} + (h_{rad} + h_{conv}) \cdot (Pitch - L_{spray} - L_{roll \ contact})}{L_{roll \ contact} \cdot (1 - q)} \cdot q$$

Where, σ = Stefan Boltzman constant (5.67e-8W/m²K⁴)

 ε steel = steel emissivity (-)

 T_s , T_{amb} = steel surface temperature, ambient temperature (K)

 Q_w = water flux (l/m²sec)

Coeff, A, n, b = coefficients for spray heat transfer (-)

L_{spray}, L_{roll contact} = spray length, roll contact length (m)

q = fraction of heat flow per zone going to roll (-)

In-Slab Thermocouple Validation: (China Steel Conditions)

Casting Speed: (m/min)	Water Spray only 0.55	Air Mist 0.56
Pour Temperature: (°C)	1510	1522
Slab Geometry: (mm*mm)	1560*270	1880*27 0
Nozzle Submergence Depth: (mm)	200	200
Working Mold Length: (mm)	600	600
Carbon Content: (%)	0.45	0.45
Mold Oscillation Frequency: (cpm)	120	120
Oscillation Stroke: (mm)	4	4
Mold Thickness (with Water Channel): (mm)	51	51
Initial Mold Cooling Water Temperature: (°C)	35	35
Water Channel Geometry (depth*width*distance): (mm ³)	25*5*28	21*6*28
Cooling Water Flow rate: (m/s)	7.62	6.41
University of Illinois at Urbana-Champaign • Metals Processing	Simulation Lab • KJ	l Lin 9

Model Validation:China Steel Spray Zones Variables

Ambient temperature below spray zones:35°CSpray zone coefficients:A=1.57, n=0.55, b=0.0075Minium convection heat transfer coefficient (natural):

8.7(W/m^2K)

No.	zone	ľ	col.	water	sp	ray	contct	frac.of	spray	conv.	amb.
	starts	#	rad.	flowrate	width	length	angle	q thr rol	coeff	coeff.	temp.
	(mm)		(m)	(l/min/row)	(m)	(m)	(Deg)			(W/m^2K)	(DegC)
Wa	ater Spra	ay o	nly								
1	600.0	2	.0700	27.500	1.300	.050	7.00	.050	0.25	8.7	35
2	906.9	5	.0700	14.860	1.200	.050	7.00	.050	0.25	8.7	35
3	1840.8	5	.1000	14.860	1.200	.050	7.00	.050	0.25	8.7	35
4	3034.3	5	.1250	11.840	1.200	.050	7.00	.200	0.25	8.7	35
5	4520.5	10	.1500	8.800	1.200	.050	7.00	.200	0.25	8.7	35
6	7977.9	10	.1750	7.150	1.200	.050	7.00	.200	0.25	8.7	35
7	11883.1	11	.2100	2.500	2.000	.050	7.00	.200	0.25	8.7	35
8	17050.7	18	.2400	0.000	9.999	.050	7.00	.200	0.25	8.7	400
	2644	0.7	End o	of last spray	zone (mm)					
Air	[.] Mist										
1	600.0	2	.0700	20.000	1.600	.040	7.00	.050	0.25	8.7	35
2	891.2	5	.0700	11.100	1.600	.060	7.00	.050	0.25	138.0	35
3	1824.2	5	.1000	9.800	1.600	.060	7.00	.050	0.25	121.0	35
4	3018.4	5	.1250	12.100	1.400	.060	7.00	.200	0.25	150.0	35
5	4491.8	10	.1500	8.300	1.400	.060	7.00	.200	0.25	103.0	35
б	7908.6	12	.1400	5.333	1.400	.060	7.00	.200	0.25	66.0	35
7	11878.4	15	.1550	0.000	1.200	.060	7.00	.330	0.25	8.7	400
8	17111.0	9	.2400	0.000	9.999	.060	7.00	.250	0.25	8.7	400
	2167	8.1	End o	of last spray	zone (mm)					

Study of Roll-Contact Heat Extraction

Heat extraction/roll ~ 21.1 KW/m

In-slab Temperature Measurement

- To validate models, temperature measurements were performed by embedding thermocouples in the solidifying slab.
- Conduct experiments a few meters before sequence end, to lessen process impact and strengthen wires.

- Close slide gate, while slab with embedded thermocouple block is drawn along at casting speed.
- When slab is horizontal, cut off end (~ 2 m) and measure exact thermocouple positions.

Thermal Model Validation: Water Spray Only (China Steel)

Thermal Model Validation: Air Mist Cooling (China Steel)

3 Slab Cooling Conditions (#1SCC China Steel)

	Case 1	Case 2	Case 3
Casting Speed: (m/min)	0.55	0.55	0.55
Pour Temperature: (°C)	1551	1551	1551
Slab Geometry: (mm*mm)	1560*270	1560*270	1560*270
C/Si/Mn/Nb/V/AI content, %	0.16/0.28/1	.33/0.023/0.0	78/0.025
Water flow rate in spray zone,			
I/min/row Zone 1	19.25	26.5	37.25
Zone 2	9.9	15.4	25.3
Zone 3	8.8	16.0	23.1
Zone 4	9.9	20.1	28.6
Zone 5	8.25	15.4	27.0
Zone 6	8.28	8.75	20.7
Zone 7	2.57	2.57	16.6
Water Intensity, I/kg.steel	0.39	0.60	1.20

Calculated Slab Temperatures

Distance from meniscus, m Pressure, MPa Distance from meniscus, m Pressure, MPa

19

#1SCC machine layout

0			#1	SC	C ma	ach	ine	e la	VO	ut	
3tinuous						0.39 l/kg.s	teel	0.6 l/kg.st	eel	1.2 l/kg.ste	el
Consor	Roll No.	Diameter ,mm	roll position ,mm	roll pitch, mm	Avg. pressure between rolls, Pa	Shell thickness, mm	Tsurf., °C	Shell thickness, mm	Tsurf., °C	Shell thickness, mm	Tsurf., °C
	1	140	720.1	171.1	55266	21.09	1230.8	21.23	1217.0	21.39	1200.2
	2	140	891.2	180.1	67292	22.89	1197.8	23.07	1177.5	23.28	1148.8
	3	140	1071.3	181.9	79674	24.73	1169.6	25.18	1145.3	25.87	1109.7
	4	140	1253.3	181.9	92098	28.43	1148.2	29.20	1121.1	30.06	1081.6
	5	140	1435.2	180.1	104437	31.13	1129.5	31.69	1100.4	32.35	1057.8
	6	140	1615.3	208.9	117666	32.87	1112.7	33.39	1081.8	34.04	1036.8
	7	200	1824.2	239.6	132871	34.82	1108.8	36.10	1071.0	38.25	1030.9
	8	200	2063.8	237.8	148994	39.48	1100.5	41.21	1058.0	42.91	1020.3
	9	200	2301.5	239.6	165047	42.88	1088.8	44.12	1043.4	45.26	1005.9
	10	200	2541.1	237.8	181021	44.97	1076.9	46.00	1029.1	46.95	991.4
	11	200	2778.9	239.6	196906	46.58	1065.2	47.55	1015.5	48.49	977.4
	12	200	3018.4	266.6	213643	48.18	1044.3	49.27	991.8	51.24	953.0
	13	250	3285.0	300.8	232262	50.49	1008.9	53.51	953.0	56.22	911.7
	14	250	3585.8	302.6	251890	55.04	989.7	57.63	931.6	59.33	889.5
	15	250	3888.4	300.8	271317	58.34	973.9	60.17	913.1	61.46	871.3
	16	250	4189.2	302.6	290526	60.54	959.5	62.08	898.5	63.26	855.9
	17	250	4491.8	336.8	310620	62.45	960.0	63.96	896.9	66.33	849.9
	18	300	4828.6	340.4	331602	64.47	955.7	68.57	891.7	72.47	841.7
	19	300	5169.0	340.4	352354	69.30	947.6	73.80	883.0	76.27	830.9
	20	300	5509.4	342.2	372795	73.80	939.0	76.89	874.1	78.70	820.7
	21	300	5851.7	340.4	392848	76.67	930.6	79.05	865.1	80.57	811.4
	22	300	6192.1	340.4	412438	78.77	922.4	80.82	855.4	82.24	802.0
	23	300	6532.5	353.0	431945	80.49	914.4	82.43	846.6	83.93	793.4
	24	300	6885.5	340.4	450991	82.06	906.5	84.07	838.5	87.94	785.8
	25	300	7226.0	340.4	469211	83.62	898.9	88.15	830.8	93.87	777.8

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • KJ Lin

20

#1SCC machine layout, cntd

Tsurf., °C

770.7

770.4

766.2

761.3

756.2

751.4

747.1

742.5

738.0

733.3

728.8

724.4

720.6

718.6

709.8

704.0

698.6

694.2

689.8

685.1

679.9

Detailed bulging analysis (both pressure and misalignment)

University of Illinois at Urbana-Champaign • *INIETAIS Processing Simulation Lab* • **NJ LIN** 22

ABAQUS Results: Rolls 12 - 14 (Spray Case 1)

Rolls 12-14 Cooling: 0.39 l/kg.steel, 0.55 m/min P=0.21-0.24 MPa, Shell=47.3-52.8 mm

ABAQUS Results: Rolls 43-45 (Spray Case 1)

Rolls 43-45 0.55 m/min Spray Cooling Case 1: 0.39 l/kg.steel, P=0.69-0.70 MPa, Shell=129.9-134.5 mm

ABAQUS Results: Roll 13 misaligned 5mm

Rolls 12-14 Cooling: 0.39 l/kg.steel, 0.55 m/min P=0.21-0.24 MPa, Shell=47.3-52.8 mm

ABAQUS Results: Roll 44 misaligned 2mm

Rolls 43-45 0.55 m/min Spray Cooling Case 1: 0.39 l/kg.steel, P=0.69-0.70 MPa, Shell=129.9-134.5 mm

Validation Experiment: Displacement of drive roll no.47

Casting condition: *Vc = 0.6 m/min *Cooling intensity: 0.39 l/kg.steel *Shell thickness: 129.9 - 134.2 mm *Pressure: 0.71 - 0.72 MPa

Measured displacement of the driving roll :

Oil pressure of roll on shell	Relative displacement*, mm
80 kg/cm^2	0.0
59.5 kg/cm^2	0.05

* the relative displacement is based on the position when pressure is 80 kg/cm²

Relationship between Drive Roll Displacement and Oil Pressure

Displacement of driving roll No.47, mm

28

* experimental displacements not measured, so are assumed to match calculations
University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • KJ Lin

Spray cooling effect on bulging & strain from roll misalignment

Rolls 12-14 0.55 m/min P=0.21-0.24 MPa

Cooling pattern	0.39 l/kg.steel	0.6 l/kg.steel	1.2 l/kg.steel
Shell thickness, mm	47.3 - 52.8	48.3 - 56.0	49.3 - 58.0
Slab surface Temp. °C	990 -1070	920 - 1030	860 - 1000

Spray cooling effect on bulging & strain from roll misalignment

Rolls 43-45 0.55 m/min P=0.69-0.70 MPa

Cooling pattern	0.39 l/kg.steel	0.6 l/kg.steel	1.2 l/kg.steel
Shell thickness, mm	129.9 - 134.5	135	135
Slab surface Temp. °C	808 - 896	784 - 863	617 - 720
	0.00 0.70	0.00 0.70	0.00 0.70

Bulging Misalignment Study: Results Summary

Effect of:

- roll misalignment
- spray cooling intensity
- position down caster

On:

- max. shell bulging
- max. strain on sol. front

Bulging misalignment study: conclusions

- Roll misalignment is a significant contributor to severe bulging, which will induce fluid flow during final stages of solidification, causing segregation and quality problems
- Shell bulging is negligible (< 0.1mm) when no roll misalignment exists.
- Increasing cooling intensity lowers shell temperature and increases strength. This lowers max. bulging slightly, especially for severe misalignment
- Reducing misalignment should be more effective at lowering bulging than increasing cooling

Study of support roll surface – steel shell contact

Effect of support roll diameter on shell contact length

	Con	diti	ons o	f roll	contact	pitch,mm	pitch/2, mm	shell,mm	Pressure, Mpa	Tsurf, C	Roll Dia,mm	remarks
Cinuous	nara	ma	tric st	ndv		184	92	25	0.06	1170	140	
Cons	gpara		une si	uuy		184	92	25	0.08	1170	140	roll 3
	#FLICAFFI					184	92	25	0.1	1170	140	
nitch mm	nitch/2	shell	Pressure	Tsurf	Roll Dia	368	184	25	0.08	1170	140	
piten,iim	mm	mm	Mpa	°C	mm	244	122	40	0.12	1100	200	
				C		244	122	40	0.15	1100	200	roll 8
350	175	30	0.1	880	310	244	122	40	0.18	1100	200	
350	175	30	0.2	880	310	488	244	40	0.15	1100	200	
350	175	30	0.3	880	310	310	155	55	0.22	990	250	
350	175	30	0.4	880	310	310	155	55	0.25	990	250	roll 14
350	175	100	0.8	880	310	310	155	55	0.28	990	250	
700	350	30	0.1	880	310	620	310	55	0.25	990	250	
700	350	100	0.6	880	310	350	175	70	0.3	948	300	
700	350	100	0.7	880	310	350	175	70	0.35	948	300	roll 19
700	350	100	0.8	880	310	350	175	70	0.4	948	300	
700	350	100	0.9	880	310	700	350	70	0.35	948	300	
700	350	100	1.0	880	310	350	175	86	0.44	891	300	
1000	500	30	0.1	880	310	350	175	86	0.49	891	300	roll 26
1000	500	100	0.8	880	310	350	175	86	0.54	891	300	
700	350	100	0.8	880	480	700	350	86	0.49	891	300	
700	350	100	0.8	880	400	340	170	105	0.54	888	300	
700	350	100	0.8	880	310	340	170	105	0.59	888	300	roll 33
700	350	100	0.8	880	300	340	170	105	0.64	888	300	
700	350	100	0.8	880	250	680	340	105	0.59	888	300	
700	350	100	0.8	880	200	354	177	129	0.64	880	300	
700	350	100	0.8	880	140	354	177	129	0.69	880	300	roll 42
,						354	177	129	0.74	880	300	
						708	354	129	0.69	880	300	

Contact length along roll for different casting conditions

$Y = 9.432 B^{0.35} L^{-0.35} R^{0.42} P^{0.525}$

Contact length profile along caster (#1SCC)

Contact angle generally constant at 1.6 deg.

Effect of roll contact angle on shell surface temp. fluctuations

Strand surface heat transfer coefs.

Comparison of bulging from static and moving models

-Moving shell predicts greater bulging than static method -Difference between methods is small if bulge < 1 mm.

Effect of support from roll curvature on bulging

Shell Temperature Profile: Effect on Bulging

linear vs. parabolic (actual) T_{SOL} 1500 Shell thickness: 130 mm 1400 $T(X) = T_{SOL} + aX + aX^2$ Pressure: 0.7 MPa 1300 Shell Temperature, $a = (T_{SUR} - T_{SOL})/2$ T_{SUR}: Shell surface temperature 1200 T_{SOL} : Solidification temperature at Fs= 0.7 1100 X : Normalized distance from sol. front Calculated 1000 × Parabolic 900 Linear T_{SURF} 800 ► X 0.6 0.8 0.2 0.4 0

Normalized distance from solid front to surface

Roll Pitch, mm	250	350	500	700	999
Bulging by con1d Temp.(Bo), mm	0.04	0.077	0.177	0.519	7.657
Bulging by Parabolic eq.(Bp), mm	0.04	0.077	0.175	0.502	7.07
Bulging by linear eq.(Bl), mm	0.038	0.071	0.158	0.405	2.42

Linear assumption underpredicts for large roll spacing

Empirical Bulging Equations

Bulging, δ (mm)

Roll pitch, L (mm)

Pressure, P (MPa)

Shell thickness, D (mm)

Shell temperature, T_{surf} (°C)

Empirical bulging equations

NSC formula:

 $\delta = 1.893 \times 10^{-3} \,\text{L}^{3.3} \times P^{1.22} \times D^{-2.85} \times \exp(-5755/(\text{T}_{\text{surf}}+273))$

$$\frac{Palmaers eq.:}{\delta_{\max}(mm)} = 0.4623 C(T_{surf}) \frac{P_{(kg/mm^2)}^{1.5} L_{(mm)}^{5.12}}{Vc_{(m/min)}^{0.22} D_{(mm)}^{3.8}}$$
$$C(T_{surf}) = \begin{cases} 0.609 \times 10^{-4} & T_{surf} = 900 \,^{\circ}C \\ 0.725 \times 10^{-4} & T_{surf} = 1000 \,^{\circ}C \\ 0.929 \times 10^{-4} & T_{surf} = 1100 \,^{\circ}C \end{cases}$$
$$\frac{Lamant eq.:}{\Delta_{\max}} = 1000 \,^{\circ}C + \frac{1000 \,^{\circ}C}{\Delta_{\max}} = 10$$

$$\delta_{\max}(mm) = 7.4088 \times 10^{-14} \exp(0.003866(T_{surf(^{\circ}C)} + 273)) \frac{L_{(mm)}^{7.16} H_{(m)}^{2.18}}{D_{(mm)}^{5.47} V c_{(m/min)}^{0.4}}$$

Empirical bulging equations

$\frac{\text{Nippon Steel}}{\delta_{\max}(mm)} = 1.893 \times 10^{-3} \exp(\frac{-5755}{T_{surf(^{\circ}C)} + 273}) \frac{P_{(kg/cm^2)}^{1.22} L_{(mm)}^{3.3}}{D_{(mm)}^{2.85}}$

Comparison of bulging eqs predictions T_{surf} = 800 °C

Shell bulge by ABAQUS, mm

Comparison of bulging eqs predictions T_{surf} = 880 °C

Shell bulge by ABAQUS, mm

Comparison of bulging eqs predictions T_{surf} = 980 °C

Shell bulge by ABAQUS, mm

Calculated bulging and strain between support rolls

(#1SCC Caster; 0.39 l/kg.steel cooling)

perfect alignment

Calculated bulging and strain between support rolls

(#1SCC Caster; 0.39 l/kg.steel cooling)

One roll missing

Conclusions

- Roll contact length from FEM contact analysis is quantified with a simple equation and subtends an angle of about 1.6 degrees
- Bulging from FEM analysis is quantified with a simple empirical equations
- Solidification front strain is directly related to max. bulging and roll pitch
- Internal cracks due to strain at solidification front are unlikely with perfect roll alignment.
- Increasing cooling intensity may lower strain below critical, if misalignment is severe
- Reducing misalignment should be more effective at avoiding internal cracks and segregation than increasing spray zone cooling