Transient Fluid Flow and Inclusion Motion in the Mold Using LES Models

Quan Yuan

Department of Mechanical Engineering University of Illinois at Urbana-Champaign

March 25, 2001

Acknowledgements

- Professor B. G.Thomas & Professor S. P. Vanka
- Accumold
- AK Steel
- Allegheny Ludlum Corp.
- Columbus Steel
- Hatch Associates
- LTV Steel
- Stollberg, Inc
- National Science Foundation (Grant DMI-98-00274)

Objectives

Compare / Validate

- Mathematical models and experiments

Investigate

- Transient flow structures
- Influence of inflow on flow
- Particle transport and removal

in mold region

Flow Investigation Models

- Steady K-ε computational models (CFX)
 - nozzle (H. Bai)
 - mold (T. Shi)
- DNS (Direct Numerical Simulations, S. Sivaramakrishnan)
- LES (Large Eddy Simulations, present work)
- PIV (Particle Image Velocimetry) water models

Governing Equations – LES Flow Model

- Fluid flow
$$\frac{\partial v_i}{\partial x_i} = 0$$
 (1)

$$\frac{D\mathbf{v}_i}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \mathbf{v}_{eff} \left(\frac{\partial \mathbf{v}_i}{\partial x_j} + \frac{\partial \mathbf{v}_j}{\partial x_i} \right)$$
(2)

$$\nu_{eff} = \nu_0 + 0.01 (\Delta x \Delta y \Delta z)^{2/3} \sqrt{\frac{\partial \mathbf{v}_i}{\partial x_j} \frac{\partial \mathbf{v}_i}{\partial x_j} + \frac{\partial \mathbf{v}_i}{\partial x_j} \frac{\partial \mathbf{v}_j}{\partial x_i}}$$
(3)

(Smagorinsky sub-grid viscosity model)

- Particle transport

$$\mathbf{v}_{p,i} = \frac{dx_{p,i}}{dt} \tag{4}$$

$$\frac{d\mathbf{v}_{p,i}}{dt} = \frac{18\rho v_0}{\rho_p d_p^2} \left(1 + 0.15 \,\mathrm{Re}^{0.687}\right) \left(\mathbf{v}_i - \mathbf{v}_{p,i}\right) + \left(1 - \frac{\rho}{\rho_p}\right) g^{\mathrm{r}}$$
(5)

$$\operatorname{Re} = \frac{\left| \mathbf{v}_{p,i} - \mathbf{v}_{i} \right| d_{p}}{V_{0}}$$
(6)

Subscript: i - x, y, z directions

p – particle

none - fluid

Computational Details

- Three dimensional unsteady Navier-Stokes Equation
- Second order accuracy in time and space for fluid flow
- Fourth order Runge-Kutta method used for particle transport
- Smagorinsky sub-grid viscosity model
- Computation mesh consists of 1.4 and 1.5 million nodes (128x169x64 and 128x184x64 nodes in x,y and z directions) for full-scale and 0.4-scale water models respectively
- Fluid flow computation takes 19.2 CPUs per time step or 39 days for 175,000 time steps (140s) for full-scale water model on PIII 750 MHz PC and 28.8 CPUs per time step or 40 days for 120,000 time steps (60s) for 0.4-scale water model
- Particle motion computation takes 2.4 extra CPUs per time step for 17,500 particles or 5 days for 175,000 time steps

Flow Model Validation Study

0.4-scale Water Model Experiment Conditions

Dimensions/Condition	Value	
Slide-gate orientation	90°	
Slide-gate opening, linear fraction of the opening distance	52%	
SEN bore diameter	32mm	
SEN submergence depth	77 ± 3mm	
Port Height x Width	32mm x 31mm	
Port thickness	11mm	
Port angle, lower edge	15° down	
Port angle, upper edge	40° down	
Bottom well recess depth	4.8mm	
Water model height	950mm	
Water model width	735mm	
(corresponding full scale caster width)	1829mm (72 inch)	
Water model thickness	95mm(top) to 65mm(bottom)	
(corresponding full scale caster thickness)	229mm (9 inch)	
Outlet at the bottom of the water model	3 round 35mm diameter holes	
Inlet volumetric flow rate through each port	3.53 x 10 ⁻⁴ m³/s	
Casting speed (top thickness)	10.2mm/s (0.611m/min)	
Average inlet velocity at port	0.411 m/s	
Averaged inlet jet angle at port	30°	
Liquid density	1000 kg/m ³	
Liquid material viscosity	0.001 Pa-s	
Gas injection	0%	

0.4-scale Water Model Computational Conditions

Dimensions/Condition	Value	
SEN submergence depth	75mm	
Port Height x Width	31mm x 31mm	
Water model/Domain height	950 mm	
Water model/Domain width	365 mm	
Water model/Domain thickness	80 mm	
Outlets at the bottom of the water model/domain	35mm x 35mm square ports	
Averaged inlet velocity at port	0.424 m/s	
Averaged jet angle at port	30° down	
Liquid flow rate through each port	3.53 x 10⁻⁴ m³/s	
Casting speed	12.1mm/s (0.725 m/min)	
Liquid density	1000 kg/m ³	
Liquid material viscosity	0.001 Pa-s	
Gas injection	0%	

Comparison of Inlet Velocity between Two LES

Cross-stream velocity field at the nozzle port plane, view towards nozzle port.

LES2: S. Sivaramakrishnan, "Transient Fluid Flow in the Mold and Heat Transfer through the Molten Slag Layer in Continuous Casting of Steel", Master thesis, Univ. of Illinois at Urbana-Champaign, 2000.

Computed Fluid Flow at Center Plane between WF, LES1

University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Two Typical Jet Flow Pattern in LES1

(a) "Staircase" jet flow pattern and (b) "Straight" jet flow pattern.

Comparison Time-averaged Velocity Field at Center Plane

PIV, LES2: S. Sivaramakrishnan, CFX: T Shi, "CCC Report", August 19, 1999. Same for following slides.

Time-averaged Speed Profile along Jet Centerline, Comparing PIV, K- ϵ , and LES

University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Time-average Speed Profile Along Top Surface Centerline, Comparing PIV, K- ϵ , and LES

Time-average Speed Profile along Horizontal Line 0.6 m below Top Surface, Comparing PIV, K- ϵ , and LES

University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

RMS of Turbulent Variation in Vertical Velocity along Horizontal Line, 0.6 m below Top Surface, Comparing PIV, K-e, and LES

University of Illinois at Urbana-Champaign • Computational Fluid Dynamics Lab/Metals Processing Simulation Lab • Quan Yuan

Turbulent Flow and Particle Transport in a Full Scale Water Model

Water model: R. C. Sussman, M. T. Burns, X. Huang and B. G. Thomas, 1992, "Inclusion Particles Behavior in a Continuous Slab Casting Mold", *10th Process Technology Conference Proceedings*, Toronto, Ontario, pp. 291-304.

Experimental and Computational Conditions

	Experiment	LES simulation
Nozzle port size /Inlet port size (x x y)	20" x 22"	0.051m x 0.056m
Submergence depth	59.1"	0.150 m
Nozzle angle	25°	25°
Inlet jet angle	25°	25°
Mold /Domain height	847"	2.152 m
Mold /Domain width	720"	0.965 m
Mold /Domain thickness	94"	0.238 m
	192 ton/hour for	
Average inlet flow rate	7020 kg/m ³ steel	0.0038 m³/s
	(two nozzle ports)	
Average inlet speed	1.69	1.69 m/s
Fluid density	1000 kg/m ³	1000 kg/m ³
Casting speed	36"/min	0.0152 m/s
Fluid kinematic viscosity	1.0×10 ⁻⁶ m²/s	1.0×10 ⁻⁶ m²/s
Particle inclusion size	2 – 3	3.8 mm (diameter)
Particle inclusion density	988 kg/m ³	988 kg/m ³
Corresponding alumina inclusion diameter in steel caster	300 µm	300 µm

Particle Injection from Nozzle Port (LES)

Group index	Number of particles	Time of introduction
0	15000	0s – 1.6s
1	500	2s – 2.4s
2	500	4s – 4.4s
3	500	6s – 6.4s
4	500	8s – 8.4s
5	500	10s –10.4s

Fluid Flow Movie

Two Typical Instantaneous Flow Structures in Upper Roll

Single vortex structure

Distinct vortex structures

Time-averaged Velocity Field (Over 100s)

Comparison With Experiments

Experiments: B.G.Thomas et al, "Simulation of Argon Gas Flow Effects on a Continuous Slab Caster", Metallurgical and Material Transaction B, Volume 25B, August 1994, pp 527-547

Motion of 15,000 Particles (0 - 100 s)

How Many Particles Are Removed to Top Surface?

Experiment: R. C. Sussman, M. T. Burns, X. Huang and B. G. Thomas, 1992, "Inclusion Particles Behavior in a Continuous Slab Casting Mold", *10th Process Technology Conference Proceedings*, Toronto, Ontario, pp. 291-304.

How These 9953 Particles Move?

Particles Entering from Which Part of the Inlet Port Are Most Likely Removed to Top Surface?

Initial positions of each particle type

Typical Particle Trajectories

How Does a Typical Removed Particle Move?

How Does a Typical Entrapped Particle Move?

Typical Particle Trajectories

How Does the First Particle Move?

How Does the Second Particle Move?

Particle Removal Results (by Screen)

-Simulation agrees with experiment

- 50% of particles removed in 100s (no entrapment by shell)

	-	Particle	sample	size i	is im	portant
--	---	----------	--------	--------	-------	---------

		0_{-10} seconds	10-100
			seconds
	500 particle groups		
LES	1	27.2%	23.4%
	2	17.8%	27.2%
	3	26.2%	23.0%
	4	23.8%	23.2%
	5	33.0%	18.2%
	Average	25.56%	23.0%
	15000 particles (group 0)	26.96%	26.03%
Experiment		22.3%	27.6%

Conclusions

Fluid Flow:

- Computed velocity field in mold region using LES agrees with measurements for both full-scale and 0.4-scale water models
- Typical instantaneous vortex structures are found in upper roll for a fullscale water model, which is consistent with a previous 0.4-scale water model study
- Two jet flow patterns are seen in LES for 0.4-scale water model
- Inflow pattern has important influences on flow in the mold region
- LES is better capable of predicting turbulent variation (RMS) than RANS

Particle Transport

- Predicted particle removal by screen agrees well with experiment
- Particle removal to top surface is independent of its initial position at which particle enters the mold
- Large number of particles are required to study particle transport in mold region
- Computed typical particle trajectories agree with experimental observations