Heat Transfer &. Solidification Model CON1D

Ya Meng

Department of Materials Science &. Engineering University of Illinois at Urbana-Champaign

March, 2001

Improvements to CON1D6.2

- Microsegregation model
- Spray zone model
- Oil casting heat flux model
- New format of input file
- New output files (18 total)
- Updated manual, source codes & input, output example files can be downloaded from website

Microsegregation Model

- First developed by Y.M. Won
- 14 elements has been taken into account
- Has been incorporated into CON1D (optional)
- User inputs cooling rate, interested position
- CON1D calculates liquidus and solidus temperature (.ext), which are used for whole simulation
- CON1D output 5 information-only files:
 - .seg: solidification time, CR, SDAS, Tsol from shell surface to inside
 - .liq: liquid concentration at shell surface
 - .lqi: liquid concentration at at some distance under shell surface
 - .sol: solid concentration at shell surface
 - .sli: solid concentration at some distance under shell surface

Equilibrium partition coefficients, diffusion coefficients and liquidus line slopes of the 14 solute elements

Element	k ^{δ/L}	<i>k</i> ^{γ/∟}	D ^δ (cm²/sec)	D ^γ (cm²/sec)	<i>m</i> (ºC/%)	n (°C/%)
С	0.19	0.34	0.0127exp(-19450/RT)	0.0761exp(-32160/RT)	78.0	-1122
Si	0.77	0.52	8.0exp(-59500/RT)	0.3exp(-60100/RT)	7.6	60
Mn	0.76	0.78	0.76exp(-53640/RT)	0.055exp(-59600/RT)	4.9	-12
Р	0.23	0.13	2.9exp(-55000/RT)	0.01exp(-43700/RT)	34.4	140
S	0.05	0.035	4.56exp(-51300/RT)	2.4exp(-53400/RT)	38.0	160
Cr	0.95	0.86	2.4exp(-57310/RT)	0.0012exp(-52340/RT)	1.04	13.4
Ni	0.83	0.95	1.6exp(-57360/RT)	0.34exp(-67490/RT)	4.69	-28.6
Cu	0.53	0.88	2.6exp(-57360/RT)	0.7exp(-68350/RT)	5.32	-10.4
Мо	0.80	0.585	3.47exp(-57690/RT)	0.068exp(-59000/RT)	2.6	77.6
Ti	0.38	0.33	3.15exp(-59200/RT)	0.15exp(-59980/RT)	10.24	120.5
V	0.93	0.63	4.8exp(-57360/RT)	0.284exp(-61900/RT)	12.95	85.5
Nb	0.40	0.22	50.2exp(-60220/RT)	0.83exp(-63690/RT)	10.24	70.8
W	0.85	0.45	1.57exp(-58200/RT	0.13exp(-57300/RT)	0.24	18.8
N	0.25	0.48	0.008exp(-18900/RT)	0.91exp(-40270/RT)	60.0	-

Notes : R is gas constant of 1.987 cal/mol-K and T is temperature in K.

Spray zone model

- Enhanced user-control spray zone parameters for parametric study
 - natural convection heat transfer coefficient
 - user-input spray coefficient, convection coefficient, ambient temperature for different spray zones
 - can simulate air mist spray cooling zones
- Validated by China steel measured data
 - input conditions and measured data from LIN, Kuan-Ju

Schematic of Spray Zones Region

$$\begin{aligned} & \textit{Spray zone model} \\ h_{rad} = \mathbf{s} \cdot \mathbf{e}_{steeel} \cdot (T_s + T_{amb}) \cdot (T_s^2 + T_{amb}^2) \\ h_{conv} = \textit{user input} \\ h_{spray} = \textit{Coeff} \cdot A \cdot Q_w^{\ n} \cdot (1 - b \cdot T_{amb}) \\ h_{roll} = \frac{(h_{rad} + h_{conv} + h_{spray}) \cdot L_{spray} + (h_{rad} + h_{conv}) \cdot (\textit{Pitch} - L_{spray} - L_{roll \ contact})}{L_{roll \ contact} \cdot (1 - q)} \cdot q \end{aligned}$$

Where, σ = Stefan Boltzman constant (5.67e-8W/m²K⁴)

 $\epsilon_{\text{steel}} = \text{steel emissivity (-)}$

 T_s , T_{amb} = steel surface temperature, ambient temperature (K)

 Q_w = water flux (l/m²sec)

Coeff, A, n, b = coefficients for spray heat transfer (-)

L_{spray}, L_{roll contact} = spray length, roll contact length (m)

q = fraction of heat flow per zone going to roll (-)

Model Validation: China Steel

Casting Conditions

	Water Spray only	Air Mist
Casting Speed: (m/min)	0.55	0.56
Pour Temperature: (°C)	1510	1522
Slab Geometry: (mm*mm)	1560*270	1880*270
Nozzle Submergence Depth: (mm)	200	200
Working Mold Length: (mm)	600	600
Carbon Content: (%)	0.45	0.45
Mold Oscillation Frequency: (cpm)	120	120
Oscillation Stroke: (mm)	4	4
Mold Thickness (with Water Channel): (mm)	51	51
Initial Mold Cooling Water Temperature: (°C)	35	35
Water Channel Geometry (depth*width*distance): (mm ³)	25*5*28	21*6*28
Cooling Water Flow rate: (m/s)	7.62	6.41

Model Validation:China Steel

Spray Zones Variables

Ambient temperature below spray zones:

Spray zone coefficients:

Minium convection heat transfer coefficient (natural):

35°C A=1.57, n=0.55, b=0.0075 8.7(W/m^2K)

No.	zone	נ	col.	water	S	spray	contct	frac.of	spray	conv.	amb.
	starts	#	rad.	flowrate	width	length	angle	q thr rol	coeff	coeff.	temp.
	(mm)		(m)	(l/min/row)	(m)	(m)	(Deg)			(W/m^2K)	(DegC)
Wa	ater Spra	iy o	nly								
1	600.0	2	.0700	27.500	1.300	.050	7.00	.050	0.25	8.7	35
2	906.9	5	.0700	14.860	1.200	.050	7.00	.050	0.25	8.7	35
3	1840.8	5	.1000	14.860	1.200	.050	7.00	.050	0.25	8.7	35
4	3034.3	5	.1250	11.840	1.200	.050	7.00	.200	0.25	8.7	35
5	4520.5	10	.1500	8.800	1.200	.050	7.00	.200	0.25	8.7	35
б	7977.9	10	.1750	7.150	1.200	.050	7.00	.200	0.25	8.7	35
7	11883.1	11	.2100	2.500	2.000	.050	7.00	.200	0.25	8.7	35
8	17050.7	18	.2400	0.000	9.999	.050	7.00	.200	0.25	8.7	400
	2644	0.7	End o	f last spray	zone	(mm)					
Aiı	[.] Mist										
1	600.0	2	.0700	20.000	1.600	.040	7.00	.050	0.25	8.7	35
2	891.2	5	.0700	11.100	1.600	.060	7.00	.050	0.25	138.0	35
3	1824.2	5	.1000	9.800	1.600	.060	7.00	.050	0.25	121.0	35
4	3018.4	5	.1250	12.100	1.400	.060	7.00	.200	0.25	150.0	35
5	4491.8	10	.1500	8.300	1.400	.060	7.00	.200	0.25	103.0	35
б	7908.6	12	.1400	5.333	1.400	.060	7.00	.200	0.25	66.0	35
7	11878.4	15	.1550	0.000	1.200	.060	7.00	.330	0.25	8.7	400
8	17111.0	9	.2400	0.000	9.999	.060	7.00	.250	0.25	8.7	400
	2167	8.1	End o	f last spray	zone	(mm)					

Model Validation: China Steel Shell Temperature for Water Spray Only Case

Model Validation: China Steel Shell Temperature for Air Mist Case

Heat Transfer Model for Billet Casting

- User chosen heat transfer model
 - Oil casting
 - mold powder casting
 - user input heat flux
- Validated by trial at POSCO
 - input conditions and measured data from PARK, J.K.

Model Description

$$q_{\text{int}} = (h_{rad} + h_{conv})(T_s - T_{mold})$$

$$h_{rad} = \frac{s(T_s + T_{mold})(T_s^2 + T_{mold}^2)}{\frac{1}{e_{steel}} + \frac{1}{e_{mold}} - 1}$$

$$h_{conv} = \frac{1}{r_{contact}} + \frac{d_{air}}{k_{air}}$$

$$r_{contact} + \frac{d_{air}}{k_{air}}$$

Where, q_{int} = heat flux transferred across gap (W/m²)

 h_{rad} =effective radiation heat transfer coefficient (W/m²K)

h_{conv} = effective convection heat transfer coefficient (W/m²K)

 T_s = surface temperature of the steel shell (°C)

T_{mold} = surface temperature of the mold (outermost coating layer) (°C)

r_{contact} = strand/mold contact resistance(m²K/W)

dair = thickness of the air gap (mm)

 k_{air} = conductivity of the air gap (W/mK)

 σ = Stefan Boltzman constant (5.67e-8W/m²K⁴)

 ϵ_{steel} , ϵ_{mold} = steel, mold surface emissivity (-)

Model Validation:Trial at POSCO

Simulation Parameters

Casting Speed:	2.2 m/min		
Pour Temperature:	1540 °C		
Slab Geometry:	120 mm*120 mm		
Meniscus Level:	100 mm		
Working Mold Length:	700 mm		
Carbon Content:	0.1 wt%		
Mold Thickness (with Water Channel):	6 mm		
Mold Taper:	0.75 %/m		
Mold Conductivity:	360 W/mK		
Initial Mold Cooling Water Temperature:	30 °C		
Cooling Water Flow rate:	1100 l/m		
Cooling Water Velocity:	6.6 m/s		
Air Conductivity:	0.1 W/mK		
Contact Resistance:	5.6e-4 m ² K/W		

Model Validation: Heat Flux

Model Validation: Mold Temperature

Model Validation: Shell Thickness (Center)

Air Gap Calculation

Air Gap Comparison

Model Validation: Shell Thickness (Corner)

Shell Temperature Comparison

Conclusion

- Microsegregation model
 - incorporated 14 elements effects on solidus and liquidus
- Spray zone model
 - calibrated by measured shell temperature at China Steel
 - can simulate both spray water only and air mist cases
- Oil casting heat flux model
 - calibrated by measured data at POSCO: mold cooling water temperature mold thermocouple temperature shell thickness
 - solid fraction for tracer test is 0.6

Future Work

- Improve interface model of CON1D
 - validate mold friction model
 - oil casting heat transfer model
- Mold flux crystallization & viscosity
- Mold temperature fluctuation model
- 2D simulation
- Parametric study