Maximum Casting Speed for CC steel billets with no submold support

Chunsheng Li

Department of Mechanical & Industrial Engineering University of Illinois at Urbana-Champaign

March 25, 2001

Objective

- Analyze bulging below the mold due to ferrostatic pressure
- Determine critical casting speed as a function of section size and mold length

Model Descriptions

- Finite element thermal stress model
- Phase fractions from non-equilibrium Fe-C phase diagram for plain carbon steel
- Recalescence and kinetics neglected
- Linear phase fraction model between liquidus and solidus for ferritic and austenitic stainless steels
- 2-D generalized plane strain

$$\dot{\boldsymbol{e}}_{total} = \dot{\boldsymbol{e}}_{elastic} + \dot{\boldsymbol{e}}_{plastic/creep} + \dot{\boldsymbol{e}}_{thermal} + \dot{\boldsymbol{e}}_{flow}$$

Model Descriptions

- Mizukami elastic modulus data
- Kozlowski constitutional equations for austenite, and modified model for delta-ferrite:
 - Kozlowski Model for Austenite
 - Modified Power Law Model for δ -ferrite

Heat Transfer Model

$$h_{rad} = \frac{\boldsymbol{s} \left(T_{shell} + T_{mold}\right) \left(T_{shell}^{2} + T_{mold}^{2}\right)}{\frac{1}{\boldsymbol{e}_{steel}} + \frac{1}{\boldsymbol{e}_{mold}} - 1}$$

Heat Transfer Model

Where, $T_{\text{shell}} = \text{surface temperature of the steel shell (°C)}$ T_{mold} = surface temperature of the mold (outermost coating layer) (°C) T_{water} = cooling water temperature, reading from CON1D output (°C) h_{rad} =effective radiation heat transfer coefficient (W/m²K) h_{water} =effective heat transfer coefficient between cooling water and mold cold face, reading from CON1D output (W/m²K) r_{contact} = strand/mold contact resistance, 5.6e-4 t_{mold} = thickness of the mold wall, 6mm tair gap = thickness of the air gap (mm) rk_{mold} = conductivity of the copper mold, 360W/mK rk_{airgap} = conductivity of the air gap, 0.1W/mK σ = Stefan Boltzman constant, 5.67e-8W/m²K⁴ $\varepsilon_{\text{steel}}$ = steel surface emissivity, 0.8

 ε_{mold} = mold surface emissivity, 0.5

Non-equilibrium phase diagram* of plain carbon steels^{**} used in CON2D

- *Young Mok WON et. al., Effect of Cooling Rate on ZST, LIT, ZDT of Carbon Steels Near Melting Point", ISIJ International, Vol. 38, 1998, No. 10, pp. 1093–1099
- **Other Steel Components: 1.52%Mn, 0.34%Si, 0.015%S, 0.012%P

Conditions

	Case 1	Case 2	Unit
Casting Speed:	2.2	4.4	m/min
Pour Temperature:	1540	1540	°C
Slab Geometry:	120 *120	120*120	mm*mm
Meniscus Level:	100	100	mm
Working Mold Length:	700	700	mm
Carbon Content:	0.1	0.27	wt%
Liquidus Temperature:	1516.01	1500.72	°C
Solidus Temperature:	1460.72	1411.79	°C
Mold Thickness (with Water Channel):	6	6	mm
Mold Taper:	0.75	0.75	%/m
Mold Conductivity:	360	360	W/mK
Initial Mold Cooling Water Temperature:	30	30	°C
Cooling Water Flow rate:	1100	1100	l/m
Cooling Water Velocity:	6.6	6.6	m/s
Air Conductivity:	0.1	0.06	W/mK
Contact Resistance:	5.6e-4	3.5e-5	m²K/W

Heat Flux Comparison: Case 1

Heat Flux Comparison: Case 2

Shell Thickness Comparison: Case 1

Shell Thickness Comparison: Case 2

Narrow Face Gaps: Case 1

Wide Face Gaps: Case 1

Narrow Face Gaps: Case 2

Wide Face Gaps: Case 2

Critical Fracture Strain

Critical strain for 0.27%C steel is 4%*

$$e_{c} = \frac{j}{e^{m^{*}} \Delta T_{B}^{n^{*}}}$$
where:

$$\Delta T_{B} = T(f_{s} = 0.9) - T(f_{s} = 0.99)$$

$$m^{*} = 0.3131, n^{*} = 0.8638, j = 0.0$$

$$m^* = 0.3131, n^* = 0.8638, \mathbf{j} = 0.02821$$

for 0.27% C steel
 $\Delta T_B = 9^o C, \, \mathbf{\dot{e}} = 7.0e - 4s^{-1}$

* Critical fracture strain is calculated based on the empirical equation above by Y.M. WON et. al. which is to be published in Met. Trans.

