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Improvements to CON1D5.0Improvements to CON1D5.0
● CON1D version 5.0 manual and new format of input file
● New output file XXXX.frc, which out put the phase 

fractions of shell surface and a certain depth (user 
input) under surface

● New spray zone model
● New oscillation mark model
● New taper calculation model
● Cooling water temperature rise adjustment by the 

program itself 
∆Τmodified cooling water = ∆Tcooling water

- make model calibration with water ∆T measurement easier
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New spray zone modelNew spray zone model

● different spray conditions can be chosen
hspray = AQw

n (1- bT0)

where QW is spray flow rate, unit l/m2s
Nozaki Model: A=0.3925, n=0.55, b=0.0075
Ishiguro Model: A=0.581, n=0.451, b=0.0075
Mizikar Model (at 276kPa): A=0.0776, n=1, b=0

● more user control spray zone parameters for parametric 
study
- e.g. spray zone length and width, roll contact angle etc.
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Spray Zone Models ComparisonSpray Zone Models Comparison
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New oscillation mark modelNew oscillation mark model
● ioscflag=0 (average osc.thickness)

● ioscflag=1 (transient osc.thickness)

● ioscflag=0 (average osc.thickness)

● ioscflag=1 (transient osc.thickness)
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The Effect of Oscillation Marks on Heat FluxThe Effect of Oscillation Marks on Heat Flux
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The Effect of Oscillation Marks on shell TemperatureThe Effect of Oscillation Marks on shell Temperature
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The Effect of Oscillation Marks on Mold TemperatureThe Effect of Oscillation Marks on Mold Temperature
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Effect of Osc. Mark Area on Heat Flux FluctuationEffect of Osc. Mark Area on Heat Flux Fluctuation
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Oscillation Mark ModelOscillation Mark Model
● Oscillation marks have important effect on heat transfer 

in flux layers. In general, they:
- impede heat transfer across the interface,  
- decrease shell thickness, 
- increase shell temperature, 
- decrease mold temperature. 

● Specifically,oscillation marks cause fluctuation in heat 
flux, mold temperature and shell temperature, and very 
slight variation in shell thickness.

● This model can be used to interpret the thermocouple 
signals for on-line quality monitoring.
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New Taper ModelNew Taper Model
● Old Model:

∆W =

● New Model:
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Taper Model ComparisonTaper Model Comparison
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Taper Model Comparison
Heat removed from mold: 60MJ/m2 (LTV Case)

Taper Model Comparison
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Taper Model Comparison
Heat removed from mold: 40MJ/m2

Taper Model Comparison
Heat removed from mold: 40MJ/m2
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New Taper Model
(Mesh size comparison)

New Taper Model
(Mesh size comparison)
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Old Taper Model
(Mesh size comparison)
Old Taper Model
(Mesh size comparison)
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Future WorkFuture Work
● The oscillation mark model still need to be compared 

with 2D simulation results using CON2D
● Input literature function to predict mold powder 

consumption and oscillation mark depth 
● Study the effect of microstructure and segregation on 

shell growth and crack
● Extend model to predict crack susceptibility, critical 

shell thickness to avoid breakouts, and optimum taper 
as a function of steel grade and casting conditions 

● Apply model to perform parametric studies 
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