Segregation and Microstructure in Continuous Casting Shell

Brian G. Thomas and Young-Mok Won

Department of Mechanical & Industrial Engineering University of Illinois at Urbana-Champaign

September 25, 2000

Objectives

•Develop a fast, simple microsegregation model for the solidification of multicomponent steel alloys.

• Implement model into other macroscopic models such as heat flow and thermal-stress analysis (CON1D and CON2D) and apply models to continuous casting.

Simple Microsegregation Model

-based on the Clyne-Kurz model;

-extended to account for multiple components, columnar dendrite microstructure, coarsening and δ/γ transformation.

$$f_{S} = \frac{1}{1 - \beta k} \left(1 - \left[\frac{C_{L}}{C_{o}} \right]^{(1 - \beta k)/(k - 1)} \right)$$

where $\beta = 2\alpha^{+} \left[1 - \exp\left(-\frac{1}{\alpha^{+}}\right) \right] - \exp\left(-\frac{1}{2\alpha^{+}}\right),$

$$\alpha^+ = 2(\alpha + \alpha^C) \text{ and } \alpha^C = 0.1$$

 $\alpha = \frac{D_s t_f}{X^2} \qquad t_f = \frac{T_{liq} - T_{sol}}{C_R}$

Assumption for Simple Model

- **1.** Complete diffusion in the liquid phase.
- 2. Local equilibrium at the solid-liquid interface.
- **3.** The equilibrium partition coefficient of solute elements applies at the solid-liquid interface and is constant throughout solidification.
- 4. Nucleation undercooling effects are negligible.
- 5. Fluid flow effects are negligible.

Secondary Dendrite Arm Spacing Model

$$\lambda_{\text{SDAS}} (\mu \text{m}) = (169.1-720.9 \ C_C) \ C_R^{-0.4835} \qquad \text{for } C_C \le 0.15$$
$$= 143.9 \ C_R^{-0.3616} \ C_C \ ^{(0.5501-1.996C)} \qquad \text{for } C_C \ge 0.15$$

Multicomponent Alloy Effect

* Liquid temperature for a given liquid composition at the solidliquid interface

 $T(^{\circ}C) = 1536 - 78 \cdot \%C - 7.6 \cdot \%Si - 4.9 \cdot \%Mn - 34.4 \cdot \%P - 38 \cdot \%S$

where %X (X = C, Si, Mn, P, S) is the liquid concentration at the solid-liquid interface.

* Initial guess (equilibrium solidus temperature)

=> Solidus temperature, T_{sol} , is given when $f_S = 1.0$

Peritectic Phase Transformation Effect

* Starting temperature of d'gtransformation $T_{\text{start}}^{\delta/\gamma}(^{\circ}\text{C}) = T_{\text{Ar4}} = 1392 + 1122 \cdot \%\text{C} - 60 \cdot \%\text{Si} + 12 \cdot \%\text{Mn} - 140 \cdot \%\text{P} - 160 \cdot \%\text{S}$ where %X (X = C,Si,Mn,P,S) = $k_{\text{X}}^{\delta/\text{L}} \cdot C_{\text{L,X}}^{\delta}$

- * Ending temperature of dgtransformation $C_{L,C} \ge 0.53$ wt%C
- * Solid fraction of **d** and **g**phase in the solid ${}^{\delta}f_{S} = \left(\frac{f_{end}^{\delta/\gamma} - f_{S}}{f_{end}^{\delta/\gamma} - f_{start}^{\delta/\gamma}}\right)^{2} \cdot f_{S} \text{ and } {}^{\gamma}f_{S} = f_{S} - {}^{\delta}f_{S}$

* Average liquid concentration during the **d**gtransformation

$$C_{L,i}^{\text{ave}} = \frac{{}^{\delta} f_{S}}{f_{S}} \cdot C_{L,i}^{\delta} + \frac{{}^{\gamma} f_{S}}{f_{S}} \cdot C_{L,i}^{\gamma}$$

Equilibrium Partition Coefficient and Diffusion Coefficient of Solute Elements

Element	k ^{d/L}	k ^{g′L}	D ^d (cm ² /sec)	D ^g (cm ² /sec)
С	0.19	0.34	0.0127exp(-19450/RT)	0.0761exp(-32160/RT)
Si	0.77	0.52	8.0exp(-59500/RT)	0.3exp(-60100/RT)
Mn	0.76	0.78	0.76exp(-53640/RT)	0.055exp(-59600/RT)
Р	0.23	0.13	2.9exp(-55000/RT)	0.01exp(-43700/RT)
S	0.05	0.035	4.56exp(-51300/RT)	2.4exp(-53400/RT)

* R is gas constant in cal/mol and T is temperature in K.

1-D Finite-Difference Model for Microsegregation

* Diffusion equation and initial and boundary conditions for calculation.

$$\frac{\partial C_{S,i}}{\partial t} = \frac{\partial}{\partial x} \left(D_{S,i}(T) \frac{\partial C_{S,i}}{\partial x} \right)$$

I. C. $C_{S,i} = k^{S/L} \cdot C_{o,i}$ at $t = 0$ B.C. $\frac{\partial C_{S,i}}{\partial x} = 0$ at $x = 0, \lambda_{SDAS}/2$

9

Validation (Case 1)

Al-4.9% Cu alloy system $C_L = 33.2\%$ Cu k = 0.145 $D_S (cm^2/sec) = 5 \times 10^{-9}$ $\lambda_{SDAS} (\mu m) = 46.6 \cdot C_R^{-0.29}$ $T_{liq} (^{\circ}C) = 660-3.374 \cdot C_o$

References

- 1. Sareal et al. : Metall. Trans. B, 1986, v17A, pp. 2063-73.
- 2. Voller et al. : Metall. Tarns. A, 1999, v30A, pp. 2183-89.

10 —

Validation (Case 2)

0.13%C-0.35%Si-1.52%Mn-0.016%P-0.002%S

University of Illinois at Urbana-Champaign Metals Pro

Metals Processing Simulation Lab Youngmok WON

Validation (Case 3)

0.13%C-0.35%Si-1.52%Mn-0.016%P-0.002%S

Reference 1. T. Matsumiya et al. : Trans. ISIJ, 1984, v24, pp. 873-82.

Validation (Case 4)

0.015%Si-1.05%Mn-0.0009%P-0.0008%S C_R = 0.17 °C/sec

0.34%Si-1.52%Mn-0.012%P-0.015%S C_R = 10.0 °C/sec

= 13 ____

Reference

1. G. Shin et al. : Tetsu-to-Hagane, 1992, v78, pp. 587-93.

2. E. Schmidtmann et al. : Arch. Eisenhuttenwes., 1983, v54, pp. 357-62

Validation (Case 5)

1. Hot Tensile Tests

- Zero Strength Temp.[1-4]
- Zero Ductility Temp.[1-5]

2. Differential Thermal Analysis

- Liquidus Temp.[6-9]
- Solidus Temp.[6-9]
- peritectic Temp. [6-8]

References

- 1. G. Shin et al. : Tetsu-to-Hagane, 1992, v78, p. 587..
- 2. D. J. Seol et al : ISIJ Int., 2000, v40, p.356.
- 3. E. Schmidtmann et al : Acrh. Eisenhuttenwe., 1983, v54, p. 357.

14 ____

- 4. T. Nakagawa et al. : ISIJ Int., v35, p. 723.
- 5. H. G. Suzuki et al. : Trans. ISIJ, 1984, v24, p. 54.
- 6. A Guide to the Solidification of Steels, 1977.
- 7. L. Ericson : Scand. J. Metall., 1977, v6, p. 116.
 8. S. Kobayashi : Trans. ISIJ, 1988, v28, p. 535.

9. POSCO data.

Effects of C_R and I_{SDAS} on Segregation (by Simple Model)

* Composition :0.044%C, 0.18%C, 0.8%C (-0.34%Si-1.52%Mn-0.012%P-0.015%S)

Combined Effects of C_R and \mathbf{I}_{SDAS} on Segregation

* Composition :0.044%C, 0.18%C, 0.8%C (-0.34%Si-1.52%Mn-0.012%P-0.015%S)

University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Youngmok WON

16

Calculated Solidus Temperatures using Simple Model for Plain Carbon Steels

	0.044	0.044wt%C		Swt%C	0.8wt%C				
C_R	λ_{SDAS}	T_{sol}	$\lambda_{ ext{SDAS}}$	T_{sol}	λ_{SDAS}	T_{sol}			
1. Constant secondary dendrite arm spacing									
1	44.1	1491.00	45.1	1455.64	79.0	1308.44			
10	44.1	1487.86	45.1	1447.13	79.0	1287.40			
100	44.1	1478.39	45.1	1428.13	79.0	1234.14			
2. Consta	2. Constant cooling rate								
10	137.4	1478.55	130.7	1434.06	182.0	1254.72			
10	44.1	1487.86	45.1	1447.13	79.0	1287.40			
10	14.2	1490.99	19.6	1454.00	34.4	1304.75			
3. Comb	3. Combined effects of cooling rate and secondary dendrite arm spacing								
1	137.4	1487.93	130.7	1450.38	182.0	1295.43			
10	44.1	1487.86	45.1	1447.13	79.0	1287.40			
100	14.2	1487.78	19.6	1442.83	34.4	1277.52			
						A.			

Non-equilibrium Phase Diagram Calculated with Simple Model

Conclusions

1. A simple microsegregation model based on the Clyne-Kurz model developed.

2. A new equation for
$$\mathbf{l}_{\text{SDAS}}$$
 proposed.
 $\mathbf{l}_{\text{SDAS}}(\mathbf{mm}) = (169.1-720.9 \ C_C) \ C_R^{-0.4835}$ for $C_C \ \pounds \ 0.15$
 $= 143.9 \ C_R^{-0.3616} \ C_C^{(0.5501-1.996C)}$ for $C_C > 0.15$

- 3. T_{sol} is lowered significantly with independent increases in either C_R or \mathbf{l}_{SDAS} .
- 4. The effect of C_R less than 100 °C/sec on phase fraction evolution is insignificant in low alloy steels with less than 0.1wt%C, or for phase fractions below 0.9 in other steels
- 5. Phosphorus and sulfur have a significant effect on solidus temperature due to their enhanced segregation near the final stage of solidification.
- 6. The simple analytical model presented easily and efficiently incorporate microsegregation phenomena into solidification calculations for use in advanced macroscopic models.

Applications with CON1D

- * Conditions for Calculation
 - Steel compositions : %C-0.34%Si-1.52%Mn-0.012%P-0.015%S
 - Casting speed : 1.524 m/min
 - Slab dimension : 960 mm * 132.1 mm
 - Working mold length : 1096 mm
 - Superheat : 1 °C

* Predicted T_{lig} and T_{sol} at strand surface using simple model (after iteration)

C (wt%)	0.003	0.044	0.1	0.18	0.3	0.44	0.6	0.8
$t_f(sec)$	0.303	0.350	0.437	0.575	0.846	1.268	1.862	2.862
C_R (°C/sec)	73.5	96.6	114.1	120.5	113.0	97.8	82.5	65.1
$\boldsymbol{I}_{SDAS}\left(\mathbf{m}\right)$	20.0	14.4	9.36	18.3	27.6	35.9	40.6	40.2
T_{liq} (°C)	1524.8	1521.6	1517.2	1511.0	1501.6	1490.7	1478.2	1462.6
$T_{sol}^{\dagger}(^{o}\mathrm{C})$	1502.5	1487.7	1467.3	1441.7	1406.0	1366.7	1324.5	1276.4

20 ____

Prediction of Phase Fraction (at 10 mm from surface)

University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Youngmok WON

21 —

Prediction of t_f , C_R and \mathbf{I}_{SDAS} **Profiles**

Predicted Effect of Carbon Content on T_{sol} Variation through Shell Thickness at Mold Exit

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Microsegregation Model Implemented into CON1D

new outputs: t_f , C_R , I_{SDAS} and T_{sol} profiles

Future Work

- (1) Maximum $C_{L,i}$ (composition between dendrites) and minimum $C_{S,i}$ (composition at dendrite trunks)
- (2) Non-equilibrium phase diagrams
- (3) Stainless steel
- (4) Macrosegregation