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Fixed-Grid finite-element model of 
mechanical behavior of solidifying 

metals (CON2D)
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Model DescriptionModel Description

l Finite element thermal stress model
l Phase fractions from non-equilibrium Fe-C 

phase diagram for plain carbon steel
l Recalescence and kinetics neglected
l Linear phase fraction model between liquidus 

and solidus for ferritic and austenitic stainless 
steels

l 2-D generalized plane strain
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Model constitutive equationsModel constitutive equations
l Mizukami elastic modulus data
l Kozlowski constitutional equations for austenite, 

and modified model for delta-ferrite: 
– Kozlowski Model for Austenite 

l Mizukami elastic modulus data
l Kozlowski constitutional equations for austenite, 

and modified model for delta-ferrite: 
– Kozlowski Model for Austenite 
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Model constitutive equations(Continued)Model constitutive equations(Continued)

– Modified Power Law Model for δ-ferrite– Modified Power Law Model for δ-ferrite
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Non-equilibrium phase diagram* of 
plain carbon steels** used in CON2D
Non-equilibrium phase diagram* of 
plain carbon steels** used in CON2D

• *Young Mok WON et. al., Effect of Cooling Rate on ZST, LIT, ZDT of 
Carbon Steels Near  Melting Point”, ISIJ International, Vol. 38, 1998, 
No. 10, pp. 1093 –1099

• **Other Steel Components: 1.52%Mn, 0.34%Si, 0.015%S, 0.012%P

• *Young Mok WON et. al., Effect of Cooling Rate on ZST, LIT, ZDT of 
Carbon Steels Near  Melting Point”, ISIJ International, Vol. 38, 1998, 
No. 10, pp. 1093 –1099

• **Other Steel Components: 1.52%Mn, 0.34%Si, 0.015%S, 0.012%P
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Flow Strain ConceptFlow Strain Concept
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Creep Model Validation*Creep Model Validation*
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* From B. G. Thomas and J. T. Parkman, Simulation of Thermal Mechanical Behaviour During Initial 
Solidification, Thermec '97 International Conference on Thermomechanical Processing of Steel and Other 
Materials, Wollongong, Australia, 1997

* From B. G. Thomas and J. T. Parkman, Simulation of Thermal Mechanical Behaviour During Initial 
Solidification, Thermec '97 International Conference on Thermomechanical Processing of Steel and Other 
Materials, Wollongong, Australia, 1997
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Thermal Linear ExpansionThermal Linear Expansion
•Liquid data from: Jimbo & 
Cramb, Met. Trans. B, 24B, 
1993, 5-10
•Solid data for plain carbon steel 
from: Harste, Jablonka & 
Schwerdtfeger, 4th Int. Conf. On 
Continuous Casting, CRM, 
1988, Brussels, 633-644
• 304 stainless steel data from: 
Thermophysical Properties of 
Materials. Curve 28-32, pp1151-
1152.
• 430 stainless steel data from: 
Thermophysical Properties of 
Materials. Curve 52, pp1151-
1152.
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Heat Transfer Model ValidationHeat Transfer Model Validation

• Lines: Boley & 
Weiner’s analytical 
solution*
• Dots: CON2D 
computation results

* J. H. Weiner and B. A. 
Boley, J. Mech. Phys. 
Solids, 1963, Vol. 11, 
pp145-154
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Stress Model ValidationStress Model Validation

• Lines: Boley & 
Weiner’s analytical 
solution*
• Dots: CON2D 
computation results

* J. H. Weiner and B. A. 
Boley, J. Mech. Phys. 
Solids, 1963, Vol. 11, 
pp145-154
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Ideal Taper PredictionIdeal Taper Prediction
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Mold Taper DefinitionMold Taper Definition

l Mold Taper:l Mold Taper:
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Heat Flux Curves used in SimulationsHeat Flux Curves used in Simulations
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Stress and plastic strain histories 
at slab wide surface (0.003%C)

Stress and plastic strain histories 
at slab wide surface (0.003%C)
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Thermal strain at slab wide face 
and total strain (0.003%C)

Thermal strain at slab wide face 
and total strain (0.003%C)
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Carbon Content EffectCarbon Content Effect

Carbon Content (%C)
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CON1D vs. CON2D Taper 
Predictions(0.003%C)

CON1D vs. CON2D Taper 
Predictions(0.003%C)
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CON1D vs. CON2D Predictions  
(cont.)(0.003%C)

CON1D vs. CON2D Predictions  
(cont.)(0.003%C)
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ConclusionsConclusions

l Thermal strain profiles dominate the ideal taper profiles.
l Higher heat removal leads to larger thermal strain and 

larger mold taper in consequence.
l Phase transformation generates stress and plastic 

strain which have important effects on the ideal mold 
taper.

l Ideal taper is not linear. More shrinkage occurs near 
meniscus so ideal taper(%/m) is much larger there.

l The total thermal strain method prediction of ideal taper 
is 20% off that of the thermal stress analysis.
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Critical Shell Thickness to Avoid 
Breakouts

Critical Shell Thickness to Avoid 
Breakouts
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Force applied to the shell due to 
ferrostatic pressure at mold exit
Force applied to the shell due to 
ferrostatic pressure at mold exit

Force balance in horizontal direction yields:

F = ρgH(b-2t)/2 = 4 (KN/m)*
- Values of the parameters are based on ARMCO caster in Mansfield, OH
* Constant force value is chosen to make this parametric study convenient

Where:
b = 132.1 mm
H = 1096 mm, 
ρ = 7800 Kg/m3

g = 9.81 m/s2, 
t = 2 ~ 17 mm
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Modeling DomainModeling Domain
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Sample casting conditionsSample casting conditions

• Casting speed : 1.0 ~ 160 m/min (16.67 ~ 2666.67mm/sec.)
• Pouring temp.: Tliquidus+ Superheat(1 oC or 50 oC)
• Bloom section size : 50, 100, 200, 300, 400 mm
•Working mold length: 300, 500, 700, 900, 1100 mm
• Mold flux -- solidification temp.: 1193.0 oC

-- viscosity at 1300 oC: 0.7 poise
-- local consumption rate: 0.255 Kg/m2



University of Illinois at Urbana-Champaign   • Metals Processing Simulation Lab   • Chunsheng LI

Surface Temperature and shell 
thickness histories (casting speed:1 m/min)

Surface Temperature and shell 
thickness histories (casting speed:1 m/min)
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Total strain and plastic strain rate 
histories (casting speed:1m/min )

Total strain and plastic strain rate 
histories (casting speed:1m/min )
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Surface temperature and shell thickness 
histories(casting speed: 21.5 m/min)

Surface temperature and shell thickness 
histories(casting speed: 21.5 m/min)
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Total strain and plastic strain rate 
histories (casting speed: 21.5 m/min)

Total strain and plastic strain rate 
histories (casting speed: 21.5 m/min)
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Average Heat Flux vs Contact TimeAverage Heat Flux vs Contact Time
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Fitted Average Heat Flux Curve:
Q = 4.05*t^(-0.33)     R=0.95
Corresponding Instantaneous Heat Flux:
Q = 12.40               t <0.01 sec.
       2.71*t^(-0.33)  t > 0.01 sec. 
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Instantaneous Heat FluxInstantaneous Heat Flux
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Critical Force Leading to Break 
Shell vs Applied Time

Critical Force Leading to Break 
Shell vs Applied Time

1. 0.044%C Plane 
carbon steel

2. Line segments 
begin at the time 
beginning to 
apply the force 
and end at 
break point

1. 0.044%C Plane 
carbon steel
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Critical shell thickness based on fracture criterions 
from Young Mok WON et. al.

* Critical fracture strain is calculated based on the empirical equation from the new by 
WON et. al. which is to be published in Met. Trans.
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Critical Shell Thickness StructuresCritical Shell Thickness Structures
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Critical casting speed Critical casting speed 

• 0.044%C carbon steel
• 1 oC superheat
• measured when plastic 
strain rate drops to 
0.001 s-1



University of Illinois at Urbana-Champaign   • Metals Processing Simulation Lab   • Chunsheng LI

ConclusionsConclusions

• δ phase is weaker than γ phase so lower carbon 
steel is weaker and requires a larger shell thickness 
at mold exit for 1% strain.
•Steel is more brittle with increasing carbon content.
• Combining the last two statements, it can be 
predicted that most breakout susceptible steel is the 
low carbon steel(0.04%C ~ 0.15%C).
• Considering uneven shell growth in 0.1%C steel, it 
is most likely to have thin spots leading to breakouts.
• Superheat does not affect the critical shell 
thickness.
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Prediction of Strand Width 
Variations

Prediction of Strand Width 
Variations
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Width VariationWidth Variation
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A potential mechanism caused 
width variation

A potential mechanism caused 
width variation
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Modeling domainModeling domain
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Force applied in this studyForce applied in this study
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l X is the distance between 
wide face slice being 
modeled and narrow face.

l Force is per unit length in z-
direction

l X is the distance between 
wide face slice being 
modeled and narrow face.
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Parameters used in this study* **Parameters used in this study* **

729.4118Working mold length (mm)

2/1Element number along thickness[heat/stress]

1000/500Element number along width[heat/stress]

0.2Modeling domain thickness (mm)

100Modeling domain width (mm)

9.8Gravity acceleration (m/sec^2)

7800Density (Kg/m^3)

1477Solidus Temperature ( C )

1502Liquidus Temperature ( C )

1550Tundish Temperature ( C )

0.9144Casting Speed (m/min.)

0.3Friction coefficient between slab and rollers

203.3Mold Thickness (mm)

1120Mold Width (mm)

* Conditions are measurements at ARMCO from Jay Watson, 1995
** Steel is 409 stainless steel (d phase only)

* Conditions are measurements at ARMCO from Jay Watson, 1995
** Steel is 409 stainless steel (d phase only)
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Surface temperature and heat flux 
from CON1D

Surface temperature and heat flux 
from CON1D
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Normal force and shear stress 
applied on the domain

Normal force and shear stress 
applied on the domain
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Average stress across shell 
thickness

Average stress across shell 
thickness
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Average strains across shell 
thickness

Average strains across shell 
thickness
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Surface temperature under first four 
rollers

Surface temperature under first four 
rollers
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Total strain under first four rollersTotal strain under first four rollers
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Average plastic strain under first four 
rollers

Average plastic strain under first four 
rollers



University of Illinois at Urbana-Champaign   • Metals Processing Simulation Lab   • Chunsheng LI

Temperatures through the shell 
thickness from mold exit to first roller

Temperatures through the shell 
thickness from mold exit to first roller
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Stresses through the shell thickness 
from mold exit to first roller

Stresses through the shell thickness 
from mold exit to first roller
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Plastic strain through shell thickness 
from mold exit to first roller

Plastic strain through shell thickness 
from mold exit to first roller
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Thermal strain through the shell 
thickness from mold exit to first roller

Thermal strain through the shell 
thickness from mold exit to first roller
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ConclusionsConclusions

l Ferrostatic pressure and friction force did make 
the shell expand through a ratcheting 
mechanism, however, they can not overcome 
the thermal shrinkage from cooling.

l Most of the load is taken by the outer layer of 
the solidifying shell less than 10 mm from the 
slab surface.

l Other mechanisms are needed to explain the 
width expansion phenomenon.

l Ferrostatic pressure and friction force did make 
the shell expand through a ratcheting 
mechanism, however, they can not overcome 
the thermal shrinkage from cooling.

l Most of the load is taken by the outer layer of 
the solidifying shell less than 10 mm from the 
slab surface.

l Other mechanisms are needed to explain the 
width expansion phenomenon.
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Future WorkFuture Work

l Extend the taper project to stainless steel.
l Link critical shell thickness results with 

lubrication predictions.
l Link critical shell thickness results with cracking 

criterion and new micro-segregation model.
l Pursuing new mechanisms to complete the 

strand width variation problem.

l Extend the taper project to stainless steel.
l Link critical shell thickness results with 

lubrication predictions.
l Link critical shell thickness results with cracking 

criterion and new micro-segregation model.
l Pursuing new mechanisms to complete the 

strand width variation problem.
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Heat Flux and Force Applied on 
Shell Histories for Normal Case
Heat Flux and Force Applied on 
Shell Histories for Normal Case
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Heat Flux and Force Applied on 
Shell Histories for Critical Case
Heat Flux and Force Applied on 
Shell Histories for Critical Case


