Validation of Fluid Flow and Solidification Simulation of a Continuous Thin-Slab Caster

Brian G. Thomas¹, Ron O'Malley², Tiebiao Shi¹, Ya Meng¹, David Creech¹, and David Stone¹

¹ University of Illinois at Urbana-Champaign,
 Department of Mechanical and Industrial Engineering,
 1206 West Green Street, Urbana, IL USA, 61801

² AK Steel Research 703 Curtis Street Middletown, Ohio 45043

Acknowledgements

- Continuous Casting Consortium
 AK Steel, Allegheny Ludlum Corp.,
 Columbus Steel, Ispat-Inland Steel,
 LTV Steel, Stollberg Inc.
- National Science Foundation (Grant DMI-98-00274)
- NCSA (computing time and use of CFX)
- AK Steel (water model and plant measurements)
- M. Langeneckert and G. Webster (finite element analysis of the mold)

Objective

Validate fluid flow and solidification models with extensive measurements:

- velocities within the liquid pool (from water models)
- temperatures measured in the molten steel pool (plant trial)
- temperatures measured in the copper mold walls (mold thermocouples)
- heat flow rate (heat balance on the mold cooling water)
- thickness of the solidified steel shell (from breakout shell measurements)

Thin Slab Casting Mold

Fluid Flow Model

3D Domain and Mesh of ¹/₄ of Liquid Pool:

- Includes 3-port nozzle
- Standard high-Re K-ε turbulence model and wall laws
- Solidification front (boundary): liquidus temperature
- Predicts velocities and superheat distribution

Water Model Flow

Superheat Flux Profiles

(Calculated Around the Exterior of the Strand Surface)

Temperature Contours in 3-D Portion of Mold Wall

Instrumented Mold (106 Thermocouples)

Heat Flux and Cooling Water Heat Balance

Temperatures Down Mold Walls (Calculated and Measured at Thermocouple Locations)

Solidification and Heat Transfer Model: CON1D

- 1-D transient finite-difference model of solidifying steel shell
- 2-D steady-state heat conduction within the mold wall
- detailed treatment of interfacial gap including mass and momentum balances on slag layers
- uses superheat flux from flow model
- predicts:
 - -shell thickness down the mold
 - -temperature in the mold and shell
 - -slag layer thicknesses (solid & liquid)
 - -heat flux down the mold
 - -mold water temperature rise
 - -ideal taper of mold walls

Solid Fraction Effect on Steady-state Shell Thickness

Section through slab showing longitudinal crack that started breakout

Narrow Face Centerline

Casting Conditions & Simulation parameters

- Casting Speed: 1.524m/min
- Pour Temperature: 1563 °C (61 °C superheat)
- Slab Size: 984mm*132mm
- Mold Length: 1200mm
- Nozzle Submerge depth: 127mm
- Mold Powder Consumption Rate: 0.48kg/m²
- Mold Thickness: wide face 35mm; narrow face 25mm
- Steel Grade: 434 Stainless Steel
- Inlet Cooling Water Temperature: 25 °C
- Fraction Solid for Shell Thickness Location: 0.1

Events during breakout

Shell Thickness Along Wide Face (WF)

(Calculated Compared with Breakout Shell Measurements)

Shell Thickness Along Wide Face (WF)

(Calculated Compared with Breakout Shell Measurements)

Shell Thickness Along Narrow Face (NF)

(Calculated Compared with Breakout Shell Measurements)

Model Applications

These validated modeling tools can now be applied to study related phenomena of practical significance in a quantitative manner, which include:

- ideal taper of the mold walls to match the shell shrinkage,
- critical shell thickness to avoid breakouts,
- behavior of flux layers in the interfacial gap,
- crack formation,
- relationships between mold wall temperatures and events in solidifying shell to enable online quality prediction.

Conclusion

- An efficient model of 3-D turbulent flow, heat transfer and solidification in a thin slab caster has been developed, featuring one-way coupling between
 - ► K- ε flow model (CFX) and
 - 1-D transient model of heat transfer in the mold, interface, and solidifying steel shell (CON1D).
- The accuracy of this modeling approach has been demonstrated by comparison with
 - ► experimental measurements of fluid flow in the liquid pool,
 - ► temperature in the molten steel,
 - ► temperature in the copper mold walls,
 - ► temperature increase of the cooling water, and
 - ➤ breakout shell thickness.