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ObjectiveObjective

Validate fluid flow and solidification models with 
extensive measurements:
Validate fluid flow and solidification models with 
extensive measurements:

l velocities within the liquid pool 
(from water models)

l temperatures measured in the molten steel pool 
(plant trial)

l temperatures measured in the copper mold walls 
(mold thermocouples)

l heat flow rate 
(heat balance on the mold cooling water)

l thickness of the solidified steel shell 
(from breakout shell measurements)
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l temperatures measured in the copper mold walls 
(mold thermocouples)

l heat flow rate 
(heat balance on the mold cooling water)

l thickness of the solidified steel shell 
(from breakout shell measurements)
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The Continuous 
Casting Process

B.G. Thomas
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Thin Slab Casting MoldThin Slab Casting Mold
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Fluid Flow ModelFluid Flow Model

3D Domain and Mesh of
¼ of Liquid Pool:

l Includes 3-port nozzle 

l Standard high-Re K-ε turbulence model and 
wall laws

l Solidification front (boundary): liquidus 
temperature

l Predicts velocities and superheat distribution

3D Domain and Mesh of
¼ of Liquid Pool:
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l Standard high-Re K-ε turbulence model and 
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3-D  K-ε Simulation                                       Water Model3-D  K-ε Simulation                                       Water Model
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Water Model FlowWater Model Flow

Velocity Along Flowing Jet 
(Calculated and Water 
Model Measurements)

Velocity Along Flowing Jet 
(Calculated and Water 
Model Measurements)
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Molten Steel Temperature
(Model Validation)

Molten Steel Temperature
(Model Validation)
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Superheat Flux Profiles
(Calculated Around the Exterior of the Strand Surface)

Superheat Flux Profiles
(Calculated Around the Exterior of the Strand Surface)
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Temperature Contours in 3-D Portion of Mold WallTemperature Contours in 3-D Portion of Mold Wall

Wide FaceWide Face
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Instrumented Mold (106 Thermocouples)Instrumented Mold (106 Thermocouples)

Dist (mm)Dist (mm)
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Heat Flux and Cooling Water Heat BalanceHeat Flux and Cooling Water Heat Balance
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Temperatures Down Mold Walls 
(Calculated and Measured at Thermocouple Locations)

Temperatures Down Mold Walls 
(Calculated and Measured at Thermocouple Locations)
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Solidification and Heat Transfer Model: CON1DSolidification and Heat Transfer Model: CON1D

l 1-D transient finite-difference model of 
solidifying steel shell

l 2-D steady-state heat conduction 
within the mold wall

l detailed treatment of interfacial gap 
including mass and momentum 
balances on slag layers

l uses superheat flux from flow model
l predicts: 

-shell thickness down the mold
-temperature in the mold and shell 
-slag layer thicknesses (solid & liquid) 
-heat flux down the mold
-mold water temperature rise
-ideal taper of mold walls
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balances on slag layers
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Solid Fraction Effect on Steady-state Shell ThicknessSolid Fraction Effect on Steady-state Shell Thickness
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Section through slab showing longitudinal 
crack that started breakout

Section through slab showing longitudinal 
crack that started breakout
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Casting Conditions & Simulation parametersCasting Conditions & Simulation parameters

l Casting Speed: 1.524m/min
l Pour Temperature: 1563 oC (61 oC superheat)
l Slab Size: 984mm*132mm
l Mold Length: 1200mm
l Nozzle Submerge depth: 127mm
l Mold Powder Consumption Rate: 0.48kg/m2

l Mold Thickness: wide face 35mm; narrow face 25mm
l Steel Grade: 434 Stainless Steel
l Inlet Cooling Water Temperature: 25 oC
l Fraction Solid for Shell Thickness Location: 0.1

l Casting Speed: 1.524m/min
l Pour Temperature: 1563 oC (61 oC superheat)
l Slab Size: 984mm*132mm
l Mold Length: 1200mm
l Nozzle Submerge depth: 127mm
l Mold Powder Consumption Rate: 0.48kg/m2

l Mold Thickness: wide face 35mm; narrow face 25mm
l Steel Grade: 434 Stainless Steel
l Inlet Cooling Water Temperature: 25 oC
l Fraction Solid for Shell Thickness Location: 0.1
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Events during breakoutEvents during breakout
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Shell Thickness Along Wide Face (WF)
(Calculated Compared with Breakout Shell Measurements)

Shell Thickness Along Wide Face (WF)
(Calculated Compared with Breakout Shell Measurements)
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Shell Thickness Along Wide Face (WF)
(Calculated Compared with Breakout Shell Measurements)

Shell Thickness Along Wide Face (WF)
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Shell Thickness Along Narrow Face (NF) 
(Calculated Compared with Breakout Shell Measurements)

Shell Thickness Along Narrow Face (NF) 
(Calculated Compared with Breakout Shell Measurements)
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Model ApplicationsModel Applications

These validated modeling tools can now be applied to 
study related phenomena of practical significance in a 
quantitative manner, which include: 

l ideal taper of the mold walls to match the shell shrinkage,

l critical shell thickness to avoid breakouts, 

l behavior of flux layers in the interfacial gap, 

l crack formation, 

l relationships between mold wall temperatures and events 
in solidifying shell to enable online quality prediction.

These validated modeling tools can now be applied to 
study related phenomena of practical significance in a 
quantitative manner, which include: 

l ideal taper of the mold walls to match the shell shrinkage,

l critical shell thickness to avoid breakouts, 

l behavior of flux layers in the interfacial gap, 

l crack formation, 

l relationships between mold wall temperatures and events 
in solidifying shell to enable online quality prediction.
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ConclusionConclusion

l An efficient model of 3-D turbulent flow, heat transfer 
and solidification in a thin slab caster has been 
developed, featuring one-way coupling between
ä K-ε flow model (CFX) and 
ä 1-D transient model of heat transfer in the mold, interface, and 

solidifying steel shell (CON1D). 

l The accuracy of this modeling approach has been 
demonstrated by comparison with 

ä experimental measurements of fluid flow in the liquid pool,
ä temperature in the molten steel, 
ä temperature in the copper mold walls, 
ä temperature increase of the cooling water, and 
ä breakout shell thickness.
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