Stress Model to Predict Critical Shell Thickness for Breakouts During Continuous Casting of Steel

Chunsheng LI Brian G. Thomas

March 10, 2000

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

The Breakout Problem

Objectives

- Develop a computational thermal-stress model of continuous casting of steel slabs.
- Predict critical solidifying shell thickness which can withstand the ferrostatic pressure at mold exit.
- Investigate the effects of steel carbon content and super heat on the critical shell thickness.

Fixed-Grid finite –element model of mechanical behavior of solidifying metals (CON2D)

- Finite element thermal stress model
- Phase fractions from non-equilibrium Fe-C phase diagram
- (Recalescence and kinetics neglected)
- 2-D generalized plane strain

$$\dot{\varepsilon}_{total} = \dot{\varepsilon}_{elastic} + \dot{\varepsilon}_{plastic/creep} + \dot{\varepsilon}_{thermal} + \dot{\varepsilon}_{flow}$$

- Mizukami elastic modulus data
- Kozlowski constitutive equations for austenite, modified for delta-ferrite
- 600 × 3 node mesh for 60 mm slice domain
- 0.001 0.1 second time step for 63s simulation

Non-equilibrium phase diagram* of plain carbon steels^{**} used in CON2D

•**Other Steel Components: 1.52%Mn, 0.34%Si, 0.015%S, 0.012%P

University of Illinois at Urbana-Champaign

Thermal Linear Expansion

•Liquid data from: Jimbo & Cramb, Met. Trans. B, 24B, 1993, 5-10 •Solid data for plain carbon steel from: Harste, Jablonka & Schwerdtfeger, 4th Int. Conf. On Continuous Casting, CRM, 1988, Brussels, 633-644 • 304 stainless steel data from: Thermophysical Properties of Materials. Curve 28-32, pp1151-1152. • 430 stainless steel data from: Thermophysical Properties of Materials. Curve 52, pp1151-

1152.

Heat transfer model validation

Lines: Boley & Weiner's analytical solution*
Dots: CON2D computation results

* J. H. Weiner and B. A. Boley, J. Mech. Phys. Solids, 1963, Vol. 11, pp145-154

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Stress model validation

Lines: Boley & Weiner's analytical solution*
Dots: CON2D computation results

* J. H. Weiner and B. A. Boley, J. Mech. Phys. Solids, 1963, Vol. 11, pp145-154

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Force applied to the shell due to ferrostatic pressure at mold exit

University of Illinois at Urbana-Champaign

Phase transformation temperatures for different steels*

Phase		Carbor	n Steels		Stainless Steels		
Transformation	0.003%C	0.044%C	0.1%C	0.44%C	304 SS	430 SS	
L/L+δ	1524.7(L)						
$L+\delta/\delta$	1496.9(S)						
$\delta/\delta+\gamma$	1383						• L - Liquid
δ+γ/γ	1376.3						 δ – Ferrite
L/L+ð		1521(L)	1516(L)				- 0 - 1 cmite
$L+\delta/L+\delta+\gamma$		1483	1483				• y – Austennie
$L+\delta+\gamma/\delta+\gamma$		1481.7(S)	1460.8(S)				
δ+γ/γ		1394.6	1419.7				
L/L+δ				1485.4(L)			(\mathbf{I}) \mathbf{I} (\mathbf{I})
$L+\delta/L+\delta+\gamma$				1483			• (L) – Liquidus
$L+\delta+\gamma/L+\gamma$				1479.4			• (S) – Solidus
L+γ/γ				1369(S)			
L/L+y					1502(L)		
L+γ/γ					1477(L)		
L/L+δ						1454(L)	
L+δ/δ						1399(S)	
Temperature	is in Cels	ius degree	* Also c	ontains: 1	.52%Mn	, 0.34%	Si, 0.015%S, 0.012%P

Casting conditions

- Casting speed : 1.524 m/min (25.40 mm/sec.)
- Pouring temp.: T_{liquidus}+ Superheat(1 °C or 50 °C)
- Slab thickness : 132.1 mm
- •Working mold length: 1096 mm
- Mold flux -- solidification temp.: 1193.0 °C

-- viscosity at 1300 °C: 0.7 poise

-- local consumption rate: $0.255 \sim 32.64 \text{ Kg/m}^2$

• Local air gap : 0.15 mm (except 0mm for 0.44%C steel)

Heat Flux history (normal heat transfer)

University of Illinois at Urbana-Champaign

Heat Removed by Mold:64.54 MJ/m²
Flux Thickness at Mold Exit: 0.92 mm

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Temperature and shell thickness histories (0.003%C critical shell thickness)

Heat Removed by Mold:14.89 MJ/m²
Flux Thickness at Mold Exit: 4.096 mm

University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Profiles through shell at mold exit (0.003%C critical shell thickness)

Profiles through shell just after mold exit (0.003%C critical shell thickness)

(Ferrostatic pressure applied)

Total strain 10 sec. from mold exit vs. shell thickness at mold exit (1 °C Super Heat)

University of Illinois at Urbana-Champaign

Heat flux and surface temperature histories (0.003%C Steel, 1 °C Super Heat)

University of Illinois at Urbana-Champaign

Fracture critical strain

* Experimental data from bending test by T. Matsumiya et. al. (ISIJ International, 1986, vol. 26, pp. 540-46).

** Dotted line is calculated from empirical formula for critical strain at 5e-4 1/s. (Young Mok WON et. al., Mat. Trans., To be published).

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Critical shell thickness based on fracture criterions from Young Mok WON et. al.

%C Shell thickness at 1% strain (mm)	Shell	Fracture Strain (%)*	Critical Shell Thickness (mm)			Strain Rate (1/s)		Heat	Surf. Temp.
	thickness at 1% strain (mm)		Total (mm)	Solid Layer	Mushy Layer (mm)	At mold exit	>10 sec	Removed At Mold Exit (MJ/m ²)	At Mold Exit (Degree C)
0.003	5.8	6.1	3.5	3.1mm δ	0.4	8.80E-03	4.86E-04	14.89	1466.86
0.044	6.1	4.5	4.2	3.8mm γ+δ	0.7	9.70E-03	6.10E-04	17.07	1444.35
0.1	4.6	3.4	4.1	3.6mm γ+ δ	0.9	7.70E-03	1.35E-05	19.35	1421.43
0.44	2.9	1.8	2.8	0.7mm γ	2.1	5.20E-03	2.76E-07	23.11	1360.00
304 SS	1.5	1.3	1.6	0.7mm γ	0.9	5.19E-02	5.00E-06	13.40	1397.05
430 SS	6.1	3.1	3.4	3.1mm δ	0.3	5.50E-02	1.00E-06	9.69	1470.28

* Critical fracture strain is calculated based on the empirical equation from the new by WON et. al. which is to be published in Met. Trans.

$$\varepsilon_c = \frac{\varphi}{\dot{\varepsilon}^{m^*} \Delta T_B^{n^*}}$$

where:

$$\Delta T_B = T(f_s = 0.9) - T(f_s = 0.99)$$

 $m^* = 0.3131, n^* = 0.8638, \varphi = 0.02821$

University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Conclusions

- δ phase is weaker than γ phase so lower carbon steel is weaker and requires a larger shell thickness at mold exit for 1% strain.
- *Higher carbon content is more brittle.*
- Combining the last two statements, it can be predicted that most breakout susceptible steel is the middle carbon steel.
- Considering uneven shell growth in 0.1%C steel, it is most likely to have thin spots leading to breakouts.
- Superheat does not affect the critical shell thickness.