Stress Model to Predict Critical Shell
Thickness for Breakouts During Continuous

Casting of Steel

Chunsheng LI
Brian G. Thomas

March 10, 2000

( University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Chunsheng LI )




The Breakout Problem
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Objectives

* Develop a computational thermal-stress model of
continuous casting of steel slabs.

* Predict critical solidifying shell thickness which
can withstand the ferrostatic pressure at mold
exit.

o Investigate the effects of steel carbon content and
super heat on the critical shell thickness.
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Fixed-Grid finite —element model of mechanical
behavior of solidifying metals (CON2D)

 Finite element thermal stress model
* Phase fractions from non-equilibrium Fe-C phase diagram
* (Recalescence and kinetics neglected)

* 2-D generalized plane strain
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total elastic plastic/ creep thermal

* Mizukami elastic modulus data

» Kozlowski constitutive equations for austenite, modified
for delta-ferrite

* 600 % 3 node mesh for 60 mm slice domain

* 0.001 — 0.1 second time step for 63s simulation
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Flow strain concept
Liquid
Tensile Stress
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Non-equilibrium phase diagram™ of plain carbon
steels™ used in CON2D
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**Young Mok WON et. al., Effect of Cooling Rate on ZST, LIT, ZDT of Carbon Steels Near
Melting Point”, IS1J International, Vol. 38, 1998, No. 10, pp. 1093 —1099
«**Other Steel Components: 1.52%Mn, 0.34%Si1, 0.015%S, 0.012%P
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Creep Model
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Liquid data from: Jimbo &
Cramb, Met. Trans. B, 24B,
1993, 5-10

*Solid data for plain carbon steel
from: Harste, Jablonka &
Schwerdtfeger, 4™ Int. Conf. On
Continuous Casting, CRM,
1988, Brussels, 633-644

* 304 stainless steel data from:
Thermophysical Properties of
Materials. Curve 28-32, ppl1151-
1152.

* 430 stainless steel data from:
Thermophysical Properties of
Materials. Curve 52, ppl1151-
1152.
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Heat transfer model validation

* Lines: Boley &
Weiner’s analytical
solution™

* Dots: CON2D
computation results
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*J. H. Weiner and B. A.
Boley, J. Mech. Phys.
Solids, 1963, Vol. 11,
ppl45-154
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Stress model validation

* Lines: Boley &
Weiner’s analytical

solution™
* Dots: CON2D
computation results
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Boley, J. Mech. Phys.
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Force applied to the shell due to ferrostatic
pressure at mold exit

Shell Thickness;

—
- ! Force Applied .
" to Shell Where:

Ferrostatic P
<ag— Ferrostatic Pressure b=132.1 mm

- i H = 1096 mm,

| — 3

= - p = 7800 Kg/m

T g =981 m/s?,

\ t=2~17 mm
be modeled

Force balance in horizontal direction yields:
F = pgH(b-2t)/2 = 4 (KN/m)*

- Values of the parameters are based on ARMCO caster in Mansfield, OH
* Constant force value is chosen to make this parametric study convenient
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Modeling domain
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Phase transformation temperatures for different
steels ™

Phase Carbon Steels Stainless Steels
Transformation | 0.003%C | 0.044%C 0.1%C 0.44%C | 304 SS | 430 SS

L/L+d 1524.7(L)

L+0/0 1496.9(S)

o/0+y 1383 e - quUId
« 0 — Ferrite
 v— Austenite

S+yly 1376.3

L/L+8 1521(L) | 1516(L)
LA+8/L+8+y 1483 1483
L+&+y/5+y 1481.7(S) | 1460.8(S)

Syl 1394.6 | 1419.7

L/L+3 1485.4(L) o
LA+8/L+5+y 1483 * (L) - Liquidus

L+o+y/L+y 1479.4 « (S) — Solidus
L+yly 1369(S)
L/L+y 1502(L)
L+yly 1477(L)
L/L+d 1454(L)
L+6/0 1399(S)

» Temperature is in Celsius degree * Also contains: 1.52%Mn, 0.34%$S1, 0.015%S, 0.012%P
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Casting conditions

« Casting speed : 1.524 m/min (25.40 mm/sec.)
* Pouring temp.: T;_,,4,s+ Superheat(1 °C or 50 °C)
* Slab thickness : 132.1 mm
*Working mold length: 1096 mm
* Mold flux -- solidification temp.: 1193.0 °C
-- viscosity at 1300 °C: 0.7 poise
-- local consumption rate: 0.255 ~ 32.64 Kg/m’

* Local air gap : 0.15 mm (except Omm for 0.44%C steel)
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Heat Flux history (normal heat transfer)
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Temperature and shell thickness histories (normal heat transfer)
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Strain and stress histories (normal heat transfer)
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Profiles through shell at mold exit (normal heat transfer)
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Profiles through shell just after mold exit (normal heat transfer)

(Ferrostatic pressure applied)
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Heat Flux history (0.003%C critical shell thickness)
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Temperature and shell thickness histories
(0.003%C critical shell thickness)
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Strain and stress histories (0.003%C critical shell thickness)
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Profiles through shell at mold exit
(0.003%C critical shell thickness)
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Profiles through shell just after mold exit

(0.003%C critical shell thickness)
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Total strain 10 sec. from mold exit vs. shell
thickness at mold exit (1 °C Super Heat)
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Heat flux and surface temperature histories
(0.003%C Steel, 1 °C Super Heat )
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Fracture critical strain

Crack * Experimental data from
Minute crack bending test by T.

: Matsumiya et. al. (ISIJ
No crack ] International, 1986, vol.

Calculated critical strain 26, pp. 540-46).
by Eq. (5)
** Dotted line is
© calculated from empirical
L ® formula for critical strain
B at 5e-4 1/s. (Young Mok
&0 WON et. al., Mat. Trans.,
To be published).
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Critical shell thickness based on fracture criterions from

Young Mok WON et. al.

Shell
thickness
at 1%
strain
(mm)

Fracture
Strain
(%)

Critical Shell Thickness (mm)

Strain Rate (1/s)

Total
(mm)

Solid Layer

Mushy
Layer

(mm)

At mold exit

>10 sec

Heat
Removed

At

Mold Exit
(MJ/m2)

Surf. Temp.
At

Mold Exit
(Degree C)

0.003
0.044
0.1
0.44
304 SS
430 SS

5.8
6.1
4.6
2.9
1.5
6.1

6.1
4.5
3.4
1.8
1.3
3.1

3.5
4.2
4.1
2.8
1.6
3.4

3.1mm

3.8mm y+3
3.6mm y+3

0.7mm vy
0.7mm vy
3.1mm d

0.4
0.7
0.9
2.1
0.9
0.3

8.80E-03
9.70E-03
7.70E-03
5.20E-03
5.19E-02
5.50E-02

4.86E-04
6.10E-04
1.35E-05
2.76E-07
5.00E-06
1.00E-06

14.89
17.07
19.35
23.11
13.40
9.69

1466.86
1444.35
1421.43
1360.00
1397.05
1470.28

* Critical fracture strain is calculated based on the empirical equation from the new by

WON et. al. which is to be published in Met. Trans.
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E" AT,
where :
AT, =T(f, =0.9)-T(f, =0.99)
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Critical shell thickness structures
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Superheat effect on critical shell thickness
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Conclusions

* O phase is weaker than yphase so lower carbon
steel is weaker and requires a larger shell thickness
at mold exit for 1% strain.

» Higher carbon content is more brittle.

» Combining the last two statements, it can be

predicted that most breakout susceptible steel is the
middle carbon steel.

» Considering uneven shell growth in 0.1%C steel, it
is most likely to have thin spots leading to breakouts.

* Superheat does not affect the critical shell
thickness.
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