Natural Convection effects on Fluid Flow and Heat Transfer in Liquid Slag Layers of Continuous Casters

S. Sivaramakrishnan, B.G.Thomas & S.P.Vanka

University of Illinois at Urbana Champaign

Computational Domain with Mesh and Boundary Conditions

Pure Natural Convection

Contours of Horizontal Density Gradients (Calculated vs Experimental Interferogram)

Oertel measurement (1988)

FIDAP

Validation Using Experimental Results

Mixed Convection (Sub-critical Interface Velocity)

Forced Convection (Post-critical Interface Velocity)

Heat Flux vs Velocity, Viscosity & Conductivity

Fig 8. Heat Flux as a function ofm, k and U

Average Nusselt Number vs Shear velocity

Right Peak Nusselt Nos vs Velocity, Viscosity & Conductivity

Fig 9. Right Peak Nusselt number as a function of m, k and U

Avg Cell Aspect Ratio vs Velocity, Viscosity & Conductivity

Fig 10. Average Cell Aspect Ratio as a function of ,k and U

Nu Profile Uneveness vs Velocity, Viscosity & Conductivity

Fig 11. Relative uneveness of Nu profile as function of Up and k

Profile of Horizontal Velocity Through Thickness

Eye Center Location Above Bottom vs Interface Velocity

Maximum Roll Speed vs Interface Velocity

Flux Bottom Velocity vs Average Interface Shear Stress

Average interface shear stress vs Steel surface velocity

Flux layer bottom velocity vs Steel bulk velocity (Effect of flux layer thickness)

Flux layer bottom velocity vs Steel bulk velocity (Effect of flux layer viscosity)

Heat Flux vs Interface Velocity, Temperature Difference

Fig 16. Heat Flux as a function of U and **D** T for $\mathbf{m} = 0.51$ Pa-s and $\mathbf{k} = 10.18$ W/mK

Heat Flux vs Interface Velocity, Liquid Layer Thickness

Fig 17. Heat Flux as a function of U and H form = 0.51 Pa-s and k = 10.18 W/mK

Heat Flux vs Interface Velocity, Liquid Layer Thicknes

